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The “Full” Story

F. Van Veen, “The Neural Network Zoo” (2016)

http://www.asimovinstitute.org/neural-network-zoo/
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What is in here?



What is in here?
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● Let’s discuss about the options and nits of each topology.
● Let’s unveil the applicability of different complex structures to 

different tasks.
● Let’s try to map our theory to bits of code.

Follow-up code: https://colab.research.google.com/drive/1bDwAPU_jsmMynS3EDdq0KSEQZ3JCYoah

https://colab.research.google.com/drive/1bDwAPU_jsmMynS3EDdq0KSEQZ3JCYoah


Basic Architectures
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Fully Connected



Fully Connected: A perceptron
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Fully connected layer with one unit. A sigmoid activation 
makes it a logistic regression (binary linear classifier):



Fully Connected: A perceptron
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Fully connected layer with one unit. No activation makes it a 
linear regression:



Fully Connected: Multiclass classifier
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Fully connected layer with many units. Softmax activation 
makes it a “softmax classifier”.
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Fully Connected: MultiLayer Perceptron
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Many fully connected layers with many units.

This is also a deep neural network of course.



Fully Connected: When input is discrete...
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We usually take one-hot codes as discrete tokens. Can we 
use a Linear layer to process it?
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Embedding Layer
Each x as an Integer 0 or 1



Fully Connected: Embedding Layer
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Embedding layer makes an efficient lookup operation, not a 
full matrix multiplication (just select one-hot index column 
from weight matrix!)y1
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Recurrent Layer

time
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Recurrent Layer
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Recurrent Layer

time
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Recurrent Layer

time
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Recurrent Layer

time

BEWARE with axis definition in the 3D Tensor!
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Recurrent Layer

time
Last time-step state
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Recurrent Layer

time

Connecting an RNN with a FC layer

BEWARE: with 
batch_first=False 
this straightforward 
connection would 
NOT work
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From RNN to LSTM

Gatings AND 
memory cell state
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From RNN to LSTM

Gatings AND 
memory cell state
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LSTM Layer
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BEWARE: LSTM has 
two states! The 
internal cumulative 
one, and the 
bounded output one.
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Convolutional Layer
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Convolutional Layer
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Convolutional Layer
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Observe the axis shape of the convolutional layer: 
[bsize, channels, seq_len], different than RNN!

We obtain 1024 y sequences
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Convolutional Layer (padding)
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Causal Convolutional Layer
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Multi-Layer Perceptron

AN MLP? 
Whut??



Multi-Layer Perceptron

AN MLP? 
Whut??

kernel of width 1 is 
equivalent to a fully 
connected layer 
sweeping in time!

Time axis 
MUST be 
included
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Transposed Convolutional Layer

Medium post on “How PyTorch Transposed Convs1D Work”

Revert the convolution operation, 
sending weighted pieces of input 
to make many outputs.

https://medium.com/@santi.pdp/how-pytorch-transposed-convs1d-work-a7adac63c4a5
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Transposed Convolutional Layer

It works as a learnable upsampler!

Example with x6 upscaling factor (stride of 4)
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Transposed Convolutional Layer



Advanced Architectures



Quasi Recurrent Neural Network 
(QRNN)
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Mix the best of both worlds!

Quasi-Recurrent Neural Networks (Bradbury et al. 2016)

https://arxiv.org/abs/1611.01576


38

(1) Use a causal CNN to first forward all inputs 
sequentially; (2) and then accumulate long-term memory 
to impose ordered processing with simple pooling.

Quasi Recurrent Neural Network 
(QRNN)
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(1) Use a causal CNN to first forward all inputs 
sequentially; (2) and then accumulate long-term memory 
to impose ordered processing with simple pooling.

Quasi Recurrent Neural Network 
(QRNN)

Good for advanced sequential processing: comparative performance to that of 
LSTMs at x16 less computational cost (with good CUDA implementation). 
Currently used by Google and Baidu for state of the art text/speech synthesis.



Auto-Encoder Neural Network

Autoencoders:
● Predict at the output the 

same input data.
● Do not need labels

cx x^

Encode Decode

40

Bottleneck



Auto-Encoder Neural Network
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Variational Auto-Encoder
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Variational Auto-Encoder



Variational Auto-Encoder

z

En
co

de
D

ec
od

e

44

reparam. trick



Deep Classifiers/Regressors
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Front-end specific to signal type: 
● Images: Conv2D
● Video: Conv2D + RNN or Conv3D
● Text: Conv1D or RNN or both
● Audio: Conv1d or Conv2d or RNN or combinations

MLP decisor with 
classification or 
regression output.

Pooling: MaxPool, AvgPool, Strided Convolutions...



Deep Classifiers/Regressors
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Deep Classifiers/Regressors
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Inception module
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Inception module / Network in Network

Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent 
Vanhoucke, and Andrew Rabinovich. "Going deeper with convolutions." CVPR 2015

GoogleNet

http://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Szegedy_Going_Deeper_With_2015_CVPR_paper.html
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Lin, Min, Qiang Chen, and Shuicheng Yan. "Network in network." ICLR 2014.

Inception module / Network in Network

http://arxiv.org/abs/1312.4400
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Deep Residual Networks

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep residual learning for image recognition." CVPR 2016 
[slides]

http://www.cv-foundation.org/openaccess/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
http://image-net.org/challenges/talks/ilsvrc2015_deep_residual_learning_kaiminghe.pdf
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Deep Residual Networks
Residual learning: reformulate the layers as learning residual functions with 
reference to the layer inputs, instead of learning unreferenced functions

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep residual learning for image recognition." CVPR 2016 
[slides]

http://www.cv-foundation.org/openaccess/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
http://image-net.org/challenges/talks/ilsvrc2015_deep_residual_learning_kaiminghe.pdf
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Deep Residual Networks

Residual learning: reformulate the layers 
as learning residual functions with 
reference to the layer inputs, instead of 
learning unreferenced functions
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Deep Residual Networks

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep residual learning for image recognition." CVPR 2016 
[slides]

Residual connectionsNon-Residual connections

http://www.cv-foundation.org/openaccess/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
http://image-net.org/challenges/talks/ilsvrc2015_deep_residual_learning_kaiminghe.pdf
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Deep Residual Networks

3.6% top 5 error…
with 152 layers !!
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Deep Residual Networks

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep residual learning for image recognition." CVPR 2016 
[slides]

Humans

http://www.cv-foundation.org/openaccess/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
http://image-net.org/challenges/talks/ilsvrc2015_deep_residual_learning_kaiminghe.pdf
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Skip connections

Figure: Kilian Weinberger
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Skip connections

Long, Jonathan, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks for semantic segmentation." CVPR 2015 & PAMI 2016.

http://fcn.berkeleyvision.org
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Skip connections: U-Net

Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for biomedical image segmentation." In International 
Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 234-241. Springer International Publishing, 2015

Downsampling 
Encoder
(Downconv)

Upsampling 
Decoder
(Deconv)

https://arxiv.org/pdf/1505.04597.pdf


61SEGAN in PyTorch GitHub

Skip connections: SEGAN

https://github.com/santi-pdp/segan_pytorch


62SEGAN in PyTorch GitHub

Skip connections: SEGAN

https://github.com/santi-pdp/segan_pytorch


63SEGAN in PyTorch GitHub

Skip connections: SEGAN

https://github.com/santi-pdp/segan_pytorch
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D is a binary classifier, whose objectives 
are: database images are Real, whereas 
generated ones are Fake .

Generative + Adversarial

G must be realistic to keep 
competing against D.



Adversarial Training (batch update) (1)

● Pick a sample x from training set
● Show x to D and update weights to 

output 1 (real)



Adversarial Training (batch update) (2)

● G maps sample z to ẍ
● show ẍ and update weights to output 0 (fake)



Adversarial Training (batch update) (3)

● Freeze D weights
● Update G weights to make D output 1 (just G weights!)
● Unfreeze D Weights and repeat



Generating images/frames

(Radford et al. 2015)

Deep Conv. GAN (DCGAN) effectively generated 64x64 RGB images in a single 

shot. It is also the base of all image generation GAN architectures.

fully 

connected Strided  

transposed 

conv layers

Conv layers,

no max-pool

fully 

connected

https://arxiv.org/abs/1511.06434


DCGAN



DCGAN



Conclusions
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Conclusions
● We have reviewed basic architectures (most fundamental layers), their relations against each other, and 

their implementations.

○ We made some implementations that change some basic block properties/efficiency (i.e. 

Embedding, causal convolution, etc.).

● We have reviewed some advanced architectures built on top of the basic ones.

○ Hybrid combinations of basic blocks with QRNN

○ Auto-Encoder structures to do unsupervised learning and generative modeling

○ Deep convolutional classifiers, their evolutions in ImageNet challenge and residual connections.

○ Skip connections and their usage in deep architectures and U-Net structures.

○ DCGAN has been revisited, breaking down its generator and discriminator structure.

● All these shown models serve as templates for many typical applications (at least as starting point)

● Combining the mentioned structures often boosts results, but often with a data hungry trade-off as 

complexity grows.


