
DEEP ARCHITECTURES

Joan Serrà
Telefónica Research
@serrjoa

2

DEEP ARCHITECTURES

Joan Serrà
Telefónica Research
@serrjoa

Santiago Pascual de la Puente
santi.pascual@upc.edu

PhD Candidate
Universitat Politècnica de Catalunya
Technical University of Catalonia

Slides from..

https://docs.google.com/presentation/d/1MF
het5q-
SIPqc_54CXWiBvlT9OdSi6P8kpkm6IxuyE
M/edit#slide=id.g522eca1928_0_11

https://docs.google.com/presentation/d/1MFhet5q-SIPqc_54CXWiBvlT9OdSi6P8kpkm6IxuyEM/edit

Outline
● What is in here?

● Basic Architectures

○ Fully Connected Layers

○ Recurrent Layers

○ Convolutional Layers

● Advanced Architectures

○ Hybrid CNN/RNN = QRNN

○ Auto-Encoders

○ Deep Classifiers/Deep Regressors

○ Residual Connections/Skip Connections and U-Net

○ GANs

● Conclusions

3

4

The “Full” Story

F. Van Veen, “The Neural Network Zoo” (2016)

http://www.asimovinstitute.org/neural-network-zoo/

5

The “Full” Story

F. Van Veen, “The Neural Network Zoo” (2016)

http://www.asimovinstitute.org/neural-network-zoo/

What is in here?

What is in here?

7

● Let’s discuss about the options and nits of each topology.
● Let’s unveil the applicability of different complex structures to

different tasks.
● Let’s try to map our theory to bits of code.

Follow-up code: https://colab.research.google.com/drive/1bDwAPU_jsmMynS3EDdq0KSEQZ3JCYoah

https://colab.research.google.com/drive/1bDwAPU_jsmMynS3EDdq0KSEQZ3JCYoah

Basic Architectures

9

Fully Connected

Fully Connected: A perceptron

10

σ

1

x1

x2

x3

y = {0, 1}

b

w1

w2

w3

Fully connected layer with one unit. A sigmoid activation
makes it a logistic regression (binary linear classifier):

Fully Connected: A perceptron

11

1

x1

x2

x3

y = {-inf, inf}

b

w1

w2

w3

Fully connected layer with one unit. No activation makes it a
linear regression:

Fully Connected: Multiclass classifier

12

Fully connected layer with many units. Softmax activation
makes it a “softmax classifier”.

y1

y2

y3
.
.
.

yN

.

.

.

Fully Connected: MultiLayer Perceptron

13

Many fully connected layers with many units.

This is also a deep neural network of course.

Fully Connected: When input is discrete...

14

We usually take one-hot codes as discrete tokens. Can we
use a Linear layer to process it?

y1

y2

y3

0

1

0

0

.

.

.

yN

.

.

.

one-hot code

15

Embedding Layer
Each x as an Integer 0 or 1

Fully Connected: Embedding Layer

16

Embedding layer makes an efficient lookup operation, not a
full matrix multiplication (just select one-hot index column
from weight matrix!)y1

y2

y3

0

1

0

0

.

.

.

yN

.

.

.

one-hot code

17

Recurrent Layer

time

time

Rotation
90o

Recurrent Layer

18

Recurrent Layer

time

19

Recurrent Layer

time

20

Recurrent Layer

time

BEWARE with axis definition in the 3D Tensor!

21

Recurrent Layer

time
Last time-step state

22

Recurrent Layer

time

Connecting an RNN with a FC layer

BEWARE: with
batch_first=False
this straightforward
connection would
NOT work

23

From RNN to LSTM

Gatings AND
memory cell state

24

From RNN to LSTM

Gatings AND
memory cell state

ct

ht

25

LSTM Layer

time

ct

ht

BEWARE: LSTM has
two states! The
internal cumulative
one, and the
bounded output one.

26

Convolutional Layer

1 2 3 4 5 6 7 8

w1 w2 w3

w1 w2 w3

w1 w2 w3

w1 w2 w3

w1 w2 w3

1 2 3 4 5 6

w1 w2 w3

x

y

27

Convolutional Layer

1 2 3 4 5 6 7 8

w1 w2 w3

w1 w2 w3

w1 w2 w3

w1 w2 w3

w1 w2 w3

1 2 3 4 5 6

w1 w2 w3

x

y We obtain 1024 y sequences

28

Convolutional Layer

1 2 3 4 5 6 7 8

w1 w2 w3

w1 w2 w3

w1 w2 w3

w1 w2 w3

w1 w2 w3

1 2 3 4 5 6

w1 w2 w3

x

y

Observe the axis shape of the convolutional layer:
[bsize, channels, seq_len], different than RNN!

We obtain 1024 y sequences

29

Convolutional Layer (padding)

x

y

1 2 3 4 5 6 7 8

w1 w2 w3

w1 w2 w3

w1 w2 w3

w1 w2 w3

w1 w2 w3

1 2 3 4 5 6 7 8

w1 w2 w3

0 0

w1 w2 w3

w1 w2 w3

We obtain 1024 y sequences

30

Causal Convolutional Layer
1 2 3 4 5 6 7 8

w1 w2 w3

w1 w2 w3

w1 w2 w3

w1 w2 w3

w1 w2 w3

1 2 3 4 5 6 7 8

w1 w2 w3

0

w1 w2 w3

w1 w2 w3

0x

y
We obtain 1024 y sequences

Multi-Layer Perceptron

AN MLP?
Whut??

Multi-Layer Perceptron

AN MLP?
Whut??

kernel of width 1 is
equivalent to a fully
connected layer
sweeping in time!

Time axis
MUST be
included

33

Transposed Convolutional Layer

Medium post on “How PyTorch Transposed Convs1D Work”

Revert the convolution operation,
sending weighted pieces of input
to make many outputs.

https://medium.com/@santi.pdp/how-pytorch-transposed-convs1d-work-a7adac63c4a5

34

Transposed Convolutional Layer

It works as a learnable upsampler!

Example with x6 upscaling factor (stride of 4)

35

Transposed Convolutional Layer

Advanced Architectures

Quasi Recurrent Neural Network
(QRNN)

37
Mix the best of both worlds!

Quasi-Recurrent Neural Networks (Bradbury et al. 2016)

https://arxiv.org/abs/1611.01576

38

(1) Use a causal CNN to first forward all inputs
sequentially; (2) and then accumulate long-term memory
to impose ordered processing with simple pooling.

Quasi Recurrent Neural Network
(QRNN)

39

(1) Use a causal CNN to first forward all inputs
sequentially; (2) and then accumulate long-term memory
to impose ordered processing with simple pooling.

Quasi Recurrent Neural Network
(QRNN)

Good for advanced sequential processing: comparative performance to that of
LSTMs at x16 less computational cost (with good CUDA implementation).
Currently used by Google and Baidu for state of the art text/speech synthesis.

Auto-Encoder Neural Network

Autoencoders:
● Predict at the output the

same input data.
● Do not need labels

cx x^

Encode Decode

40

Bottleneck

Auto-Encoder Neural Network

c
x

x^

En
co
de

D
ec
od
e

41

Bo
ttl
en
ec
k

Variational Auto-Encoder

42

c
x

x^

En
co
de

D
ec
od
e

Bo
ttl
en
ec
k

z

Encode Decode

43

Variational Auto-Encoder

Variational Auto-Encoder

z

En
co

de
D

ec
od

e

44

reparam. trick

Deep Classifiers/Regressors

45

Front-end specific to signal type:
● Images: Conv2D
● Video: Conv2D + RNN or Conv3D
● Text: Conv1D or RNN or both
● Audio: Conv1d or Conv2d or RNN or combinations

MLP decisor with
classification or
regression output.

Pooling: MaxPool, AvgPool, Strided Convolutions...

Deep Classifiers/Regressors

46

Deep Classifiers/Regressors

47

48

Inception module

49

Inception module / Network in Network

Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. "Going deeper with convolutions." CVPR 2015

GoogleNet

http://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Szegedy_Going_Deeper_With_2015_CVPR_paper.html

50
Lin, Min, Qiang Chen, and Shuicheng Yan. "Network in network." ICLR 2014.

Inception module / Network in Network

http://arxiv.org/abs/1312.4400

52

Deep Residual Networks

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep residual learning for image recognition." CVPR 2016
[slides]

http://www.cv-foundation.org/openaccess/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
http://image-net.org/challenges/talks/ilsvrc2015_deep_residual_learning_kaiminghe.pdf

53

Deep Residual Networks
Residual learning: reformulate the layers as learning residual functions with
reference to the layer inputs, instead of learning unreferenced functions

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep residual learning for image recognition." CVPR 2016
[slides]

http://www.cv-foundation.org/openaccess/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
http://image-net.org/challenges/talks/ilsvrc2015_deep_residual_learning_kaiminghe.pdf

54

Deep Residual Networks

Residual learning: reformulate the layers
as learning residual functions with
reference to the layer inputs, instead of
learning unreferenced functions

55

Deep Residual Networks

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep residual learning for image recognition." CVPR 2016
[slides]

Residual connectionsNon-Residual connections

http://www.cv-foundation.org/openaccess/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
http://image-net.org/challenges/talks/ilsvrc2015_deep_residual_learning_kaiminghe.pdf

56

Deep Residual Networks

3.6% top 5 error…
with 152 layers !!

57

Deep Residual Networks

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep residual learning for image recognition." CVPR 2016
[slides]

Humans

http://www.cv-foundation.org/openaccess/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
http://image-net.org/challenges/talks/ilsvrc2015_deep_residual_learning_kaiminghe.pdf

58

Skip connections

Figure: Kilian Weinberger

59

Skip connections

Long, Jonathan, Evan Shelhamer, and Trevor Darrell. "Fully convolutional networks for semantic segmentation." CVPR 2015 & PAMI 2016.

http://fcn.berkeleyvision.org

60

Skip connections: U-Net

Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for biomedical image segmentation." In International
Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 234-241. Springer International Publishing, 2015

Downsampling
Encoder
(Downconv)

Upsampling
Decoder
(Deconv)

https://arxiv.org/pdf/1505.04597.pdf

61SEGAN in PyTorch GitHub

Skip connections: SEGAN

https://github.com/santi-pdp/segan_pytorch

62SEGAN in PyTorch GitHub

Skip connections: SEGAN

https://github.com/santi-pdp/segan_pytorch

63SEGAN in PyTorch GitHub

Skip connections: SEGAN

https://github.com/santi-pdp/segan_pytorch

Generator

Real world
samples

Database
Discriminator

Real

Lo
ss

La
te

nt
 r

an
d

o
m

 v
ar

ia
b

le

Sample

Sample

Fake

64

z

D is a binary classifier, whose objectives
are: database images are Real, whereas
generated ones are Fake .

Generative + Adversarial

G must be realistic to keep
competing against D.

Adversarial Training (batch update) (1)

● Pick a sample x from training set
● Show x to D and update weights to

output 1 (real)

Adversarial Training (batch update) (2)

● G maps sample z to ẍ
● show ẍ and update weights to output 0 (fake)

Adversarial Training (batch update) (3)

● Freeze D weights
● Update G weights to make D output 1 (just G weights!)
● Unfreeze D Weights and repeat

Generating images/frames

(Radford et al. 2015)

Deep Conv. GAN (DCGAN) effectively generated 64x64 RGB images in a single

shot. It is also the base of all image generation GAN architectures.

fully

connected Strided

transposed

conv layers

Conv layers,

no max-pool

fully

connected

https://arxiv.org/abs/1511.06434

DCGAN

DCGAN

Conclusions

72

Conclusions
● We have reviewed basic architectures (most fundamental layers), their relations against each other, and

their implementations.

○ We made some implementations that change some basic block properties/efficiency (i.e.

Embedding, causal convolution, etc.).

● We have reviewed some advanced architectures built on top of the basic ones.

○ Hybrid combinations of basic blocks with QRNN

○ Auto-Encoder structures to do unsupervised learning and generative modeling

○ Deep convolutional classifiers, their evolutions in ImageNet challenge and residual connections.

○ Skip connections and their usage in deep architectures and U-Net structures.

○ DCGAN has been revisited, breaking down its generator and discriminator structure.

● All these shown models serve as templates for many typical applications (at least as starting point)

● Combining the mentioned structures often boosts results, but often with a data hungry trade-off as

complexity grows.

