Web Studies Involving User Data

Dr. Daniel Wolff, TIDO Music UK Ltd.

daniel.wolff@tido-music.com

Introduction

- User data is valuable in many applications
 - Validation for user-targeted application functionality
 - (Automatic) adaptation to preference and behaviour
 - Data-centered approach to research and design
- User data is critical
 - Data protection
 - Users can revoke data access
- User data is expensive
 - Participant acquisition
 - Data management

www.tido-music.com - a data-driven music platform

- Music platform with highly interactive apps on iOs and the web
- Combining different media such as
 - Notation
 - Audio
 - Multi-perspective video
 - Teacher and performer commentary
 - Rich information about the composer and pieces
- Editors produce content with help of MIR, e.g. audio-score alignment, image processing ...
- User feedback essential for app development and design

Tido Home

Piano Vocal V

New releases

Artists & Composers

Clara Schumann: Music for Voice, Piano & Violin

Piano collections

Educational Piano 🛛 🔭

Demo

 $\langle \rangle$

TIDO Music

Common Types of MIR Studies on the Web

- Listening tests (rate loudness, similarity, add tags, ...)
- Playlist collection (sequence, grouping)
- Interactive tests (tapping etc...)
- Exploration (2d/3d music maps & worlds)

Participants: Sample size & distribution

- Need to monitor / control demographics
- Distribution / requirements on statistical representation
 - What group to analyse / predict
 - What distribution of attributes within that group
- Requirements for machine learning
 - Minimum sample number per class / target ...

Participant acquisition and motivation

- Students
- Special interest groups (ISMIR-Community, MIREX, Kaggle ...)
- Integration into existing application
- Integration into social network
- Game with a purpose (fun)
- Payment / vouchers (\$\$\$)
- Paid platform (e.g. Prolific Academic, Amazon Mechanical Turk)

Interactive audio tests: Some examples

- MIREX, e.g. audio similarity task. [Downie et al. 2014]
- Survey on pleasurable moments in music [de Fleurian 2018]
- Subjective comparison of music production practices using the Web Audio Evaluation Tool [De Man et al. 2016]
- BBC: How Musical Are You [BBC Labs 2011]
- Magnatagatune [Law et al. 2009], HerdIt [Barrington et al. 2009]
- Spot the Odd Song Out [Wolff et al. 2013]
- KKBOX Tag Game

	of Pop Intro Play Leaderboard 11417 of 30000 t	target votes	
	Get started with	a new nick name	
	or sign in with your existing key. Sign in		
	Hint: in order to listen and vote you need to choose a nick name.		
M	RECORDING A Tick here if the audio does not play.	RECORDING B	
Ser los	Does recording A have very poor audio quality?	Does recording B have very poor audio quality?	
SAN	Which recording has the better audio quality ? C Recording A. C Equally good. C Recording B.		
and a second	Irrespective of audio quality, how similar is the music in the two recordings? not similar very similar 0 1 0 2 0 3 0 4 0 5		Mauch et al. 2013
6	Hint: in order to listen and vote you need to choose a nick name.		

Welcome guest Sign out Change My Settings

Home Audio Player Selection My Assignment Instructions

THIS PAGE CONTAINS 10 CANDIDATES FOR QUERY ID # 2

< Previous Query Next Query > Listen to Candidate Query ID#2 Select Broad Category Select Fine Score #b011647 ^e Somewhat Similar NOT **VERY** 10 4-41 Similar Similar 3.8 SAVED Mid Last First Mid Last First [SAVED] Align Player Listen to Candidate Select Broad Category Select Fine Score Align Player #b011618 c Somewhat Similar e VERY Similar NOT Similar First Mid Last SAVED 8 [SAVED] **Listen to Candidate** Select Broad Category Select Fine Score Align Player #b061811 NOT c Somewhat Similar c VERY Similar 10 Similar First Mid Last SAVED 1.2 [SAVED]

[Gruzd et al. 2007]

11

MIR-Specific Requirements

- Strongly depend on task at hand
- Audio calibration & adjustment with data report
- Playback jitter and quality assurance
- Synchronisation between audio & video playback
- Restricted and / or monitored playback controls
- Anonymisation of recorded data

Quick and Simple: Existing Platforms

- Well-developed tools for form-based surveys
 - Google forms,
 - Qualtrix,
 - Survey Monkey ...
- MIR-specific web/survey frameworks exist
 - Web Audio Evaluation Tool [Jillings et al. 2015]
 - JS-XTRACT: A realtime audio feature extraction library for the web
 - O CASIMIR [Wolff et al. 2013.]

Brew your own?

- MIR has many very specific use-cases with requirements on
 - $\circ~$ Data collected (e.g. response timing, audio loudness \dots)
 - Music dataset format and access
- Tempting to (re) implement large parts of the collection system
 - Benefits: custom everything, control
 - Drawbacks: maintenance, portability, shareability, testing
- Suggestion:
 - Re-use existing and maintained projects
 - Keep custom part (UI) implementation simple with few dependencies

BYO: Front-end Frameworks

- Use html5 media containers & web-audio where possible
- Consider security features
 - Https
 - Avoid cross-site scripting
- Consider limitations on mobile
 - Screen sizes
 - Interaction necessary for automatic playback, download,
 - limited control on when / whether playback starts

BYO: Hosting

- Need to assure reliability, security, and development access
- Cloud infrastructure exists in AWS/Google cloud
 - ++ : encryption enabled, user authentification, security certification, reliable back-up
 - -- : data is "on the web", 3rd party has (some) access
- Alternative: University infrastructure
 - ++ : cheaper (hopefully), "closer" access to data and admin
 - -- : less streamlined method, depends on local resources

BYO: Back-end

- Keep data storage back-end independent of front-end / UI
- Consider scaling to many users (1000s or more ?)
- Consider portability to other servers
- Popular **python (flask/django)** or **node** frameworks
- Consider data storage and export options : MYSQL; NOSQL; MongoDB

Back-end Data Security

- Back-up (clone/snapshot, automation)
- Integrity (real-time/across snapshots)
- Access restrictions
- Encryption
- Anonymisation

Handling Participant Consent

- Check University Ethical Guidelines
- Participant needs to know:
 - What will they be doing
 - Are there any risks or specific requirements
 - How long will it take
 - What are the benefits to them or society
 - Contact details for later questions

Participant Data & Consent

- Check University Ethical Guidelines
- Informed consent necessary to collect personal data
 - Anonymity / possible ways of (re)identification
 - **Type** of data collected
 - Data storage place and duration of retainment
 - People having access to data (if to be made public make explicit)
 - Any data handlers (e.g. Amazon AWS if stored there)
 - Mechanism to request deletion of data (even after de-identification)
 - Note that deletion of published or anonymised data becomes impossible

Participant Data

• Typical categorisation of data in terms of protection:

- Personal Identifiable Information: Participant is identifiable
- **De-identified data**: Extra information is kept to re-identify the participant
- Anonymised data: This part of data cannot be re-identified easily
- Anonymous data: Data has never been identifiable
- **Data aggregation**: Data combined from different sources
- **Re-identification**: Participant again linked to a data sample through combination of data sources

Participant Data: Potential PID

- University Guidelines: Categorisation for sampled data often still under development
- Identifiability often depends on context
 - Linkable data in other datasets
 - Amount of data collected per user
 - Uniqueness of data with user

Privacy-Preserving Machine Learning

- Modern deep networks need large amounts of data
- Large models can copy large amounts of data
 - => transform data such that it cannot be identified prior to training
 - => reduce probability of private data being stored in the model
- In multi-server computation, data is shared
 - between servers
 - across networks
 - => shape computation such that privated data is not shared

Summary

- User data is helpful in adapting applications to the real world
- User data can be collected easily through the web
- Personal data needs to be protected and requires consent
- Platforms for studies exist, but complex tasks need development
- Code on the web can reach many, but it ages fast
- Re-use the wheel
- Web studies give your work great exposure