Python tools for MIR research

Alastair Porter
23 May 2019
MIP Frontiers Summer School

We're back!

+ Last time: general comments on starting project, writing code,
tests, publishing code, dealing with data

+ Now: some specific tips on how to organise your python
projects better, and to write better® code

* organised, easy to maintain, easy to understand, faster

Python tools for research 2

Overview

+ project setup and dependency management
» code best practises for layout and separation
+ defensive programming

+ strings and files

+ data formats

* notebooks

+ visualisations

+ some other python tips

Python tools for research

Other material

+ |ISMIR tutorial from last year

+ MTG python tips: https://mtg.github.io/pymtg/tips/tips.html

+ Not in this presentation (No time)
+ Testing
+ Docker

+ More interesting things in the python standard library
+ MIR tools (!)

Python tools for research

https://mtg.github.io/pymtg/tips/tips.html

tirst things first

don’t use python 2

Setting up projects

+ You need to know what dependencies are needed to run
your software

+ Sometimes a library might change from version to version,
keep a record of which one you used

+ Different projects of yours may need different versions of
libraries, or of python

Python tools for research

Installing python dependencies

+ You should never need to use sudo to install dependencies
with pip

+ virtualeny, pipeny, anaconda

Python tools for research

virtualenv

$ virtualenv env

Using base prefix '/Users/alastair/.pyenv/versions/3.7.2"

New python executable in /Users/alastair/2019-05-mipfrontiers/
env/bin/python3.7

Also creating executable in /Users/alastair/2019-05-mipfrontiers/
env/bin/python

Installing setuptools, pip, wheel...

done.

What should your environment be called? It's up to you. | use env, others
use ve

https://virtualenv.pypa.io/en/latest/

Python tools for research 9

https://virtualenv.pypa.io/en/latest/

Fully-contained python

$ 1s env/
bin include 11ib

$ 1s env/bin/

activate easy_1install python-config
activate.csh easy_install-3.7 python3
activate.fish 1P python3.7
activate.psl n1p3 wheel
activate.xsh DD 7

activate_this.py python

+ Turn on your environment

. env/bin/activate
source env/bin/activate

Python tools for research

pIp

(env) $ pip install numpy matplotlib
B

numpy-1.16.3 pyparsing-2.4.0 python-dateutil-2.8.0 six-1.12.0

$ 1s env/1lib/python3.7/site-packages/

= pyGachie - matplotlib-3.1.0.dist-1nfo pyparsing.py
cycler-0.10.0.dist-1nfo mpl_toolkits
python_dateutil1-2.8.0.dist-1nfo

cycler.py numpy setuptools

dateutil numpy-1.16.3.dist-1nfo
setuptools-41.0.1.dist-1nfo

easy_install.py p1p six-1.12.0.dist-1nfo
kiwisolver-1.1.0.dist-1nfo pip-19.1.1.dist-1info S1X.py
kiwisolver.cpython-37m-darwin.so pkg_resources wheel
matplotlib pylab.py wheel-0.33.4.dist-1nfo

matplotlib-3.1.0-py3.7-nspkg.pth pyparsing-2.4.0.dist-1info

Python tools for research

Successfully installed cycler-0.10.0 kiwisolver-1.1.0 matplotlib-3.1.0

1T

why does a venv work?

* |f you run pip or python, the version from your virtualenv will
be called

+ This python has access to all of the packages you installed
how!

« the activate script changes $PATH

(env) $ which python
/Users/alastair/2019-05-mipfrontiers/env/bin/python
(env) $ which python
/Users/alastair/2019-05-mipfrontiers/env/bin/pip

Python tools for research 12

What does this mean?

/
0’0

You can actually run python or pip with a full path, and it will
use the dependencies from your virtualenv

L)

- This is really useful when you're calling your python from a
script (e.g. on a cluster)

/scratch/aporter/project/env/bin/python -c "'import numpy;
print(numpy.array(2))’

Python tools for research 13

saving and loading dependencies

pip freeze > requirements.txt

$ cat requirements.txt
cycler==0.10.0
kiwisolver==1.1.0
matplotinib—=3 1-0
punpy==1 16 5
pyparsing==2.4.0
python-dateutil==2.8.0
Six—=lee 3200}

pip 1nstall -r requirements.txt

Python tools for research

14

pipenv

+ virtualenv and pip have some problems

+ if you use pip freeze, you don't know if package versions
are selected specifically, or if they just came from a
dependency

+ some people don't like the behaviour of the activate script

+ virtualenv and pip are two different programs, pipenv does
the same as both in one program

+ https://docs.pipenv.org/en/latest/

Python tools for research 15

https://docs.pipenv.org/en/latest/

using pipenv

+ install once with pip install pipeny, or with homebrew

pipenv install numpy

+ Will automatically create a virtualenv if you don't already
have one

R/

+ will create a Pipfile (your explicit packages) and
Pipfile.lock (implicit dependencies, with exact versions)

Python tools for research 16

virtualenvwrapper and anaconda

+ https://virtualenvwrapper.readthedocs.io/en/latest/

+ Allows you to give names to your virtualenvs, manages the
location of them

+ https://docs.conda.io/en/|atest/

+ Dependency and environment management for Python and
other languages

+ Contains compiled binary packages for a lot of software,
including non-python software

Python tools for research

7

https://virtualenvwrapper.readthedocs.io/en/latest/
https://docs.conda.io/en/latest/

let’s write some code

Project structure

+ If you're writing a software package to distribute to other
people, consider your package name

+ does it already exist on https://pypi.org/ !
+ README.md file, basic outline about what this package does

+ License

Python tools for research

19

https://pypi.org/

Package structure

¢ mirth/

L nlt- py
data.py
process.py
README . md

COPYING

setup.py

Python tools for research

20

o1t 1nit

git ik

git add README.md requirements.txt Pipfile
gLt commit

git remote add origin

git push -u origin master

R/
0‘0

Don't use git add . because you might add items that you
don't want in the repository

Python tools for research

22

using git etficiently

+ Some types of automatically generated files shouldn't be
included in your git repository

+ .pyc files (compiled python code)
* your entire virtual env
+ .DS_Store (from a mac)

+ put these in a .gitignore file so that you don't accidentally
commit them
https://github.com/github/gitignore

Python tools for research

23

https://github.com/github/gitignore

oit out of here

+ Other types of files you shouldn't include

+ Large data files
+ github has a limit of ~|00MB per file, I000MB per repo

+ If you have small data that you want to include, it's generally
OK, but remember that this stays in your git history forever

+ Secrets! Be very careful about access codes (e.g. for AWS).
People scan github and will steal your key within seconds
https://medium.com/@nagguru/exposing-your-aws-access-keys-
on-github-can-be-extremely-costly-a-personal-

experience-960be/aad039

Python tools for research 24

https://medium.com/@nagguru/exposing-your-aws-access-keys-on-github-can-be-extremely-costly-a-personal-experience-960be7aad039
https://medium.com/@nagguru/exposing-your-aws-access-keys-on-github-can-be-extremely-costly-a-personal-experience-960be7aad039
https://medium.com/@nagguru/exposing-your-aws-access-keys-on-github-can-be-extremely-costly-a-personal-experience-960be7aad039

code layout

+ Python doesn't put many requirements on the structure or
appearance of your code

+ However, consistency in code makes it easier to see patterns,
find mistakes

+ Choose a style and stick with it, but use tools to help you

+ The pep8 styleguide lists some best-practises
https://www.python.org/dev/peps/pep-0008/

+ black will automatically format your code for you
https://github.com/python/black

Python tools for research 25

https://www.python.org/dev/peps/pep-0008/
https://github.com/python/black

what problems do you see?

def do scanl(dir =

il

files = os.scandir(dir)

for f in files:
data.read_datafile(f)

do scan(sys.argvl|l

Python tools for research 26

what problems do you see?

“ imports not ordered
+ imports not separated

+ unused import

f do_scan(dir =

+ spacing between functions =1
files = os.scandir(dir)

for f in files:
data.read_datafile(f)

* no spaces in assignment do_scan(sys.arav[1])

+ reserved keyword as variable

+ extra spaces in fuction def

+ use of [] in function definition
+ no main guard

+ sys.argv instead of argument parser

Python tools for research 27

code linting

+ the dynamic nature of python makes it easy to make mistakes
by missing variables, ordering code incorrectly, or making

spelling mistakes

+ pylint is a static code checker to look at your code and find
common errors

+ flake8 integrates pylint checks and pep8 formatting checks:
https://flake8.readthedocs.io/en/latest/index.html

Python tools for research 28

https://flake8.readthedocs.io/en/latest/index.html

$ flake8 process.py

process.py:5:1: F401 'json' imported but unused
process.py:7:1: E302 expected 2 blank lines, found 1
process.py:7:16: E251 unexpected spaces around keyword /
parameter equals

process.py:7:18: E251 unexpected spaces around keyword /
parameter equals

process.py:7:21: E203 whitespace before ',
process.py:8:5: F841 local variable 'a' 1s assigned to but
never used

process.py:8:6: E225 missing whitespace around operator
process.py:13:1: E305 expected 2 blank 1ines after class or
function definition, found 1

process.py:13:21: W292 no newline at end of file

Python tools for research 29

real-time tools for linting and formatting

Code Refactor Run Tools VCS Windo

Generate...

Surround With...
Unwrap/Remove...

Completion
Folding

Insert Live Template...

L T I R L TN e

Comment with Line Comment

+ pycharm does this for you!

Reformat Code

Show Reformat File Dialog
Auto-Indent Lines
Optimize Imports

IVIWYEG WIiGLVETIIGI IR WYY

Move Statement Up

Move Line Down
Move Line Up

Inspect Code...
Code Cleanup...

Python tools for research Silent Code Cleanup
Run Inspection by Name...

after formatting

import os

» Doesn't rename variables import sys
fOI")’OU import data

def do_scan(dir=[],):
— 4l
files = os.scandir(dir)
for f in files:
data.read_datafile(f)

do_scan(sys.argv([1])

Python tools for research 31

learn your tools

+ Find some tutorials for your favourite text editor and learn
how to let them help you

+ PyCharm:

+ https://twitter.com/pycharm

+ 472 PyCharm tips and tricks: https://www.youtube.com/
watch?v=NSuHIgD2y%4

Python tools for research

32

https://twitter.com/pycharm
https://www.youtube.com/watch?v=NSuHlqD2y94
https://www.youtube.com/watch?v=NSuHlqD2y94

SCripts

+ Don't write all of your script at the same level without functions
or a main guard

Py © Ie badscript.py ' e data.py
import json
o Wh)” import matplotlib.pyplot as plt

from mirth import data

+ if you import this file, it will

re-run everything input_data = json. load(open())

output = data.some_long_process(input_data)

L)

+ if a processing step fails, you (SIS

have to start again for o in output:
fields.append(ol

+ if you need to change a olt.plot(fields)
parameter you have to ST
make many edits in the file

Python tools for research 13

betterscript.py
import argparse
import json
import os

from mirth import data

MULTIPLY_FACTOR = 1.1

def read_data(filename: str) —> dict:
"""Read a json file that contains important information.
with open(filename) as fp:
return json.load(fp)

munn

def process_data(input_data, mult_factor: float):
output = data.some_long_process(input_data)

fields = []
for o in output:

fields.append(o['value'] * mult_factor)
return fields

def main(filename: str, mult_factor: float):
input_data = read_data(filename)
output_data = process_data(input_data, mult_factor)
jsonname = .json'.format(os.path.splitext(filename[0]))

with open(jsonname, 'w') as fp:
json.dump(output_data, fp)

if __name__ == main :
parser = argparse.ArgumentParser(='Process important data')
parser.add_argument(‘datafile’, ='json file containing important data')
parser.add_argument('-m’, wltiply’', =float, =MULTIPLY_FACTOR, =

args = parser.parse_args()
main(args.datafile, args.m)

plotting in a separate file

import argparse

import json
import os

Save intermediate data [ERIEEIEEE:

import matplotlib.pyplot as plt

If you want to change

def plot_data(fields: List[float], filename: str):

your plot layout you pltplot(fields)
don't need to plt.savefig(filename)

I‘eCOmPUte data def main(filename: str, force_write: bool):

with open(filename) as fp:
data = json.load(fp)

figname = .png'.format(os.path.splitext(filename[0]))

(env) alastair@apmini: , rs$ python plotda£a.py ‘__h'e’lp'ath.exists(.figname) or force_write:
usage: plotdata.py [-h] [-f] datafile ta(data, figname)

Process important data

positional arguments: gparse.ArgumentParser(

datafile json file containing result of computation argument(‘'-f", =
argument ("’

optional arguments:
-h, --help show this help message and exit er.parse_args()
-f overwrite output image atafile, args.f)

Python tools for research 15

functions

how do you remember what parameter is for what!
documentation!

def process_data(data, parameter_a, parameter_b, parameter_c):
data += 1
parameter_a += 1
parameter_b += 2
parameter_c += 3
return data + parameter_a + parameter_b + parameter_c

read_data(filename):
data = open(filename).read()
process_data(data, 1, 2, 3)

def process_data(data, offset, parameter_a, parameter_b, parameter_c):
data += 1
parameter_a += offset
parameter_b += offset
parameter_c += offset
return data + parameter_a + parameter_b + parameter_c

read_data(filename):
data = open(filename).read()
process_data(data, 1, 2, 3, 4)

Python tools for research 36

named function parameters

X/

* are parameter names important! Make them required

def process_data(data, *, offset, parameter_a, parameter_b, parameter_c):
data += 1
parameter_a += offset
parameter_b += offset
parameter_c += offset
return data + parameter_a + parameter_b + parameter_c

f read_data(filename): def process_data(data, *, offset, parameter_a, parameter_b, parame
data = open(filename).read() data += 1

process_data(data, 1, 2, 3, 4) parameter_a += offset
parameter_b += offset
parameter_c += offset
return data + parameter_a + parameter_b + parameter_c

Unexpected argument more... (38F1)

ef read_data(filename):
data = open(filename).read()
process_data(data, =4,

7/

+ https://python-3-for-scientists.readthedocs.io/en/latest/python3 advanced.html

Python tools for research 7

https://python-3-for-scientists.readthedocs.io/en/latest/python3_advanced.html

type hints

+ Ensure that the values of your parameters are correct

+ This is not checked by python when you run it, but external
tools (e.g. pycharm) can use it for notifying you of potential
errors

def process_data(data, *, offset: int, parameter_a: bool,
parameter_b: float, parameter_c: List[int]):

data += 1

parameter_a += offset

parameter_b += offset

parameter_c += offset

return data + parameter_a + parameter_b + parameter_c

def read_data(filename):
data = open(filename).read()
process_data(data, =4, =1,

Expected type 'bool', got 'int' instead more... (38F1)

Python tools for research 18

defensive programming

Python's dynamic nature makes it easy to make mistakes

>>> mydict = {}
>>> mydict['no_data']

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
KeyError: 'no_data’

Did you get this data from an external source!?
first thing to ask is "what happens if this data isn't available?"

Are you sure that all items in the dictionary have the key that you
want!

KeyError, AttributeError - imagine if this happens after it's been
running for hours or days

Python tools for research 10

defensive programming

+ Getting data from the web, what if the site goes down!
+ always consider possible HT TPErrors

» reading files, what if there's a parsing error?
“ json can raise ValueError

+ [f the file doesn't exist!?
+ Or the folder that you want to write something to!?

+ if you call int() to turn a string into an integer, what if it's not
an integer!?

Python tools for research 40

defensive programming

def myfun(param):
1T param ==
data = {

ellf param ==

data = {

data.get ()
|

Local variable 'data' might be referenced before assignment more... (38F1)

+ Tools can help

+ Think carefully about your data and the operations you are
performing on it

+ Never trust data from other people (or even from yourself)

Python tools for research

41

strings!

Lots of people complained about the changes to strings in python 3, but
| think it's made things a lot simpler

. i . mytext =
written text is a string
. (mytext)
when you read and write files, the str
string is turned into bytes using an
o .8 mytext.encode(
€ncoding (eg uti-) b'espa\xc3\xblol'
some functions implicitly perform (mytext.encode(
this translation for you, but you can bytes

force it if you need to

https://medium.com/@andreacolangelo/strings-unicode-and-bytes-in-
python-3-everything-you-always-wanted-to-know-2/dc02ff2686

Python tools for research 42

https://medium.com/@andreacolangelo/strings-unicode-and-bytes-in-python-3-everything-you-always-wanted-to-know-27dc02ff2686
https://medium.com/@andreacolangelo/strings-unicode-and-bytes-in-python-3-everything-you-always-wanted-to-know-27dc02ff2686

Python tools for research

reading strings

|) fp:
(fp.read()))

<class 'str'>

2 ,) fp:
(fp.read()))

<class 'str'>

3 , encoding=

(fp.read)))

<class 'str'>

43

reading bytes

Why might you want to read bytes!?
data file that you want to process
spectrogram images?

manually-encoded data (fp.read)))

<class 'bytes'>

5 ¢ ,), fp:
thebytes = fp.read()
thestr = thebytes.decode(

¢ (thestr))

<class 'str'>

Python tools for research

) fp:

44

strings from the internet

response = requests.get(

response.content
b'{"ip":"84.89.157.21"}'

(response.content)
bytes

response.text
"{"ip":"84.89.157.21"}'

(response.text)
str

response. json()
{'ip': '84.89.157.21'}

Python tools for research

writing strings

Reading in reverse!

Make sure everything is a string and use implicit conversion

¢ , , encoding=
fp.write(mytext)

(, , encoding=
fp.write(mytext.encode(D))

Traceback (most recent call last)
n-1nput-6-9f205e5fd76e> in <module>
iith open encoding as fp
fp write mytext encode

: write() argument must be str, not bytes

Python tools for research

writing strings

or make sure everything is a byte and use explicit conversion

(
fp.write(mytext)

Traceback (most recent call last)
n-input-8-e92a5b@529f4> in <module>
ith open as fp
fp write mytext

str

: a bytes-like object is required, not

(,) as fp:
fp.write(mytext.encode()

Python tools for research 47

storing data on disk

+ Do you have more than 5,000 items? split them into multiple
folders based on part of the filename or id

+ Why! the way filesystems work can make it slow to get
listings of files when there are thousands of files in a
directory

def write_file(basedir, item_id, data):

dirname = item_id % 10

dirname = os.path.join(basedir, .format(dirname))
os.makedirs(dirname, =True)
filename = os.path.join(dirname, .format(item_id))
Lth open(filename,) as fp:
fp.write(data)

Python tools for research 48

reading files

+ use os.walk to get a list of filenames in a directory

L)

def get_filename(basedir):
filenames = []
for root, dirs, files in os.walk(basedir):
for ¥ in files:

if f.endswith() s
filenames.append(os.path.join(root, f))
return filenames

Python tools for research

49

how many files should you have?

+ Consider also how many files you want to write

+ Lots of small files (10s of thousands or more) means that
you'll spend a lot of time just opening or writing files

+ This can impact runtime
+ Consider bundling data into fewer larger files

+ Don't read/write the same file over and over again

Python tools for research 50

file formats

+ WWhat format should you use to store data!?

+ Python has many formats that it can read and write natively
+ pickle, json, csv

+ Many other libraries that do similar things, depending on the
type of data

+ numpy array, hdf5

/
0’0

use modules for these libraries, don't write it yourself

Python tools for research

51

pickle

* A representation of the memory structure of the object in
python

+ Quite fast to read and write

+ Has some different versions - e.g. you can't open a pickle
from python 3 in python 2

+ Don't share data to other people with it - a pickle can
contain executable code and is therefore a potential
security issue. Use a data format instead

Python tools for research 52

CSV

+ See our CSV tip: https://mtg.github.io/pymtg/tips/tips.html

+ always use the csv module

<+ Don't do this:
data = open('myfile.csv').read()
lrHes —cdata splatl: \n)
cows = lines{@] splitC.)

+ pandas will read csv files, but they must be "square”

Python tools for research

53

https://mtg.github.io/pymtg/tips/tips.html

CSV

+ Remember that you can read large files line by line to get just

the data that you need
with open('myfile.csv') as fp:
r = csv.reader(fp)
for line 1in r:
data.append(line[9])

Python tools for research 54

{
. "calan-yaman": {
SOn "info": {
"title": ""
"artist": "Yashaswi Sirpotdar",
"link": "https://www.kadenze.com/courses/north-in¢
"trackFile": "calan-yaman.mp3",
"duration'": 92.08014583333333

},
+ json is easy to deal with, and LA
reflects python dictionaries really “naneTrans": "Rag Yanan'",
“"pitchSpace": [
well <
"svara": "Dha",
"pitch": 187.147,
+ However, it's really inefficient et ~280.0
"key": "q"
s H
+ You load all of the data into <
memory to read just a single field epitehis 207,652,

"cent": -100.0,
"function": "samvadi",
llkeyH: llwll

"svara": "Sa",
"pitch": 220.0,
"cent": 0.0,
"function": "sadja",
"key'": "a"
Python tools for research } 55

Improving json

+ Consider the size of repeated key names

+ if you have 1000 items with 5 keys each, length 10 that's
almost half a megabyte of just keys!

+ numbers are stored as text! pitch here is 7 bytes (56 bits)

+ do you really need decimal points in Hz? a | 6-bit integer
would store the same data

+ spaces after key names are optional, as are newlines ~ sver": "ona,

"pitch": 187.147,
"cent": -280.0,

+ save 2 bytes per line functions ™

llkeyll: llqll

Python tools for research 56

json caveats

with open(filename, 'w') as fp:
json-weltetdata, Ffp, 1ndent=0, separators=C:.: - >)

but! if you have newlines, git diffs look good. consider your data

alastair@apmini:~/2019-05-mipfrontiers$ git diff data.json
diff --git a/data.json b/data.json
index 2c9570b. .e3eaa37 100644
--- a/data. json
+++ b/data. json
@@ -1,7 +1,7 @@
{

"pitchSpace”:
{

"pitch": 187.147,
"cent": -280.0,
"function": ""

)

Python tools for research 517

other file limitations

+ Some filesize limits to keep in mind
+ FAT32 has a 4gb file limit
+ The original zip format has a 4gb archive size limit

+ People might not always want to download a huge archive to
get just a small amount of data

+ if you're splitting data up into folders, consider making
archives of each folder - smaller to download

Python tools for research

notebooks

I DON'T LIKE NOTEBOOKS

o

|

{
Joel Grus (@joelgrus) S #JupyterCon 2018

+ https://docs.google.com/presentation/d/ I n2RIMdmv | p25Xy5thJUhkK GvjtV-dkAlsUXP-

AL4ffl/edit#slide=id.g362da58057 0_|

+ video of presentation https://www.youtube.com/watch?v=7jiPelFXbé6U

Python tools for research

59

https://docs.google.com/presentation/d/1n2RlMdmv1p25Xy5thJUhkKGvjtV-dkAIsUXP-AL4ffI/edit#slide=id.g362da58057_0_1
https://docs.google.com/presentation/d/1n2RlMdmv1p25Xy5thJUhkKGvjtV-dkAIsUXP-AL4ffI/edit#slide=id.g362da58057_0_1
https://www.youtube.com/watch?v=7jiPeIFXb6U

notebooks can be great...

https://github.com/MT

#Detect intervals from pitch distribution and plot them on the figure
intervals = np.array(peakLocationDetection(pcd)) * pd params['step size']
plt.vlines(intervals, 0, max(pcd), color='r', lw=2)

print('Intervals computed: {} (cents with respect to tonic)'.format(intervals))

Intervals computed: [160 300 500 710 800 885 1000] (cents with respect to tonic)
Pitch distribution

0.020 A

0.015

0.010 A

0.005

Relative freq. of occurence

0.000

-500 0 500 1000 1500
Distance to tonic{cents)

Octave folded pitch distribution

0.025 A
0.020 1
0.015
0.010

0.005 \/

0.000 A

0 200 400 600 800 1000 1200
Distance to tonic{cents)

Relative freq. of occurence

Creating the Scala file

Writing the scale to .scl file which can be loaded in Scala with which one can sonify the estimated scale

In []: scalaFile = os.path.join(dataDir, '{}.scl'.format(mbid))
with open(scalaFile, 'w') as fp:
fp.write('! autopeak.scl\n!\nFile created by tuningAnalysis\n'+str(len(intervals)+1)+'\n!\n')

#First octave

for interval in intervals:
fp.write(str(float(interval))+'\n'")

fp.write(str(float(CENTS IN OCTAVE))+'\n')#octave

fp.close()

Pythc

Loading the estimated scale in Scala

Initiate a cunthecizar vnlir Serala enftware ~an commiinicate with for evunthecic (for evamnle cimnlecunthy Onen Seala and elick

60

but...

+ You can execute cells out of order, encouraging you to not
think about your program flow

+ The editor doesn't have a lot of great functionality that other
tools give you (code formatting, autocomplete, code
checking)

+ |t encourages you to not think about the structure and
reproducibility of your code

+ difficult to test

+ difficult to copy/paste examples

Python tools for research 61

how do you use git?

diff --git a/My Notebook.ipynb b/My Notebook.ipynb
index dbcc294..7b1392c 100644
--- a/My Notebook.ipynb
+++ b/My Notebook.ipynb
@@ -52,13 +52,32 @@
}’

{
"cell_type": "code",

acutior

"metadata": {},

"Source": [
"with open('Pipfile') as fp:\n",
Python tool

notebook recommendations

+ Go and watch the presentation

+ This doesn't mean that you shouldn't use notebooks. Know their
strengths and weaknesses

+ A good compromise is to write your code in a file and then use
a notebook to show it off and display visualisations

+ your code benefits from source control, tests

+ you still get pretty inline pictures, and you can tell a story with
your code

Python tools for research

visualisation

+ presentation of your data is important to get your point
across

+ be careful with matplotlib default settings, they often don't
look great

+ |f you have time, play around with the colour pallets and
themes (https://matplotlib.org/users/dflt_style_changes.html)

+ Take a look at seaborn for graphs (https://seaborn.pydata.org/)

+ Think about the layout of your data

Python tools for research 64

https://matplotlib.org/users/dflt_style_changes.html
https://seaborn.pydata.org/

data-to-ink ratio

+ Take some time to think about the data that you're presenting

700

Calories per 100g for different foods

French Potato
Fries Chips

w 600
2
S 500 -
©
O 400 A
e
°
3300-
2
£ 200
—
< 100 -
0" T T T

EFrench

Fries
H Potato

Chips
HE Bacon
@ Pizza

0O Chili Dog

Bacon Pizza Chili Dog

Type of Food

700
600
500
400
300
200
100

Calories per 100g

French
Fries

Potato
Chips

Bacon

Pizza

Chili Dog

+ https://www.darkhorseanalytics.com/blog/data-looks-better-naked

Python tools for research

05

https://www.darkhorseanalytics.com/blog/data-looks-better-naked

can you remove more?

. Calories per 100g
200 Calories per 100g

600
500 533
400
300
200
100

French Potato Bacon Pizza Chili Dog French Potato Bacon Pizza Chili Dog
Fries Chips Fries Chips

+ see also https://gorelik.net/2018/03/2 | /three-most-common-
mistakes-in-data-visualization-%E2%80%A8and-how-to-avoid-
them-now-the-slides/

Python tools for research 66

https://gorelik.net/2018/03/21/three-most-common-mistakes-in-data-visualization-%E2%80%A8and-how-to-avoid-them-now-the-slides/
https://gorelik.net/2018/03/21/three-most-common-mistakes-in-data-visualization-%E2%80%A8and-how-to-avoid-them-now-the-slides/
https://gorelik.net/2018/03/21/three-most-common-mistakes-in-data-visualization-%E2%80%A8and-how-to-avoid-them-now-the-slides/

pie charts

+ Pie charts make it difficult for people to intuit ratios

Pig Meat Preferences

ences

Pig Meat Prq

Bacon Bacon 429

Ribs 14%

— I

Ham 2%

Other 32%

+ https://www.darkhorseanalytics.com/blog/salvaging-the-pie

Python tools for research

https://www.darkhorseanalytics.com/blog/salvaging-the-pie

tables

PO

86.2

Heel (The Bad Guy)

Jobber (The Unknown)

Face (The Hero) The Ultimate Warrior Tiger May-2011 97320.00
Face (The Hero) Hulk Hogan Oxen Jan-2008 988551.00 61.978
Face (The Hero) Macho Man Randy Savage Monkey Feb-2008 157618.00 59.29
Face (The Hero) Hacksaw Jim Duggan Pig Mar-2008 30300.00 53.4332
Face (The Hero) Superfly Jimmy Snuka Dragon Mar-2008 12341.00 52.7
Heel (The Bad Guy) Rowdy Roddy Piper Rooster Jun-1968 71645.00 45.4
Heel (The Bad Guy) | ' M"'°3,:;';:’ — Rat Apr-1975 449342.00 43.7689
Heel (The Bad Guy) Mr. Perfect Curt Henning Rat May-1980 13773.00 38
Heel (The Bad Guy) Jake the Snake Roberts Snake
‘8:":::)3:)" Brad Smith Sheep
Role Name
Jobber (The
Ted Duncan Sheep) _
Unknown) Face (The Hero) The Ultimate Warrior
Jobber (The Joey the Uber Nerd Hulk H
Unknown) Cherdarchuk s 15

Macho Man Randy Savage
Hacksaw Jim Duggan
Superfly Jimmy Snuka

Rowdy Roddy Piper

The Million Dollar Man Ted DiBiase
Mr. Perfect Curt Henning

Jake the Snake Roberts

Brad Smith
Ted Duncan
Joey the Uber Nerd Cherdarchuk

Year of the...

Tiger
Oxen
Monkey
Pig
Dragon
Rooster
Rat

Rat
Snake

Sheep
Sheep
Snake

Debut

May-2011
Jan-2008
Feb-2008
Mar-2008
Mar-2008

Jun-1968
Apr-1975
May-1980
Jul-1975

Aug-2008
Aug-2008
Aug-2008

Thousands
of Fans

97.3
988.6
157.6

30.3

12.3

71.6
4493
13.8
5.6

133
0.2
0.0

Takedown
Rate

86.2
62.0
59.3
534
52.7

454
438
38.0
38.0

36.3
336
21.0

+ https://www.darkhorseanalytics.com/blog/clear-off-the-table

Python tools for research

68

https://www.darkhorseanalytics.com/blog/clear-off-the-table

tables in latex

like visualisations, consider what data you can remove

\begin{tabular}{I1I1I1ITIT1I1I}
\hline
Classifier & Accuracy & Normalized & Random & Size & Number \\

& & accuracy & baseline & & of classes \\ \hline
GTZAN & 75.5165 \% & 75.6501 \% & 10 \% & 1,000 & 10 \\ \hline
\end{tabular}

Python tools for research

tables in latex

use booktabs for nice looking tables

\begin{tabular}{lrrrrr}
\toprule
Classifier & Accuracy & {Normalized} & {Random}

& Size & Number \\

& & {accuracy} & {baseline} & & of classes \\ \midrule

GTZAN & 75.52 & 75.65 & 10 & 1\,000 & 10 \\
\bottomrule
\end{tabular}

Python tools for research

70

a bunch of python tips

mtg python tips

+ we publish "tip of the week" (every few weeks/once a month)

+ See them here: https://mtg.github.io/pymtg/tips/tips.html

Python tools for research

72

https://mtg.github.io/pymtg/tips/tips.html

speed of access in datastructures

+ As a list gets longer, checking for set membership takes

longer

= e =P 2 34 o Imillien. 2 o Z2million
>>> 50 1n mylist

False

+ Use a set when you want to check
>>> myset = set(mylist)
>>> 50 1n myset # <- super fast

https://docs.python.org/3.7/library/stdtypes.html#set-types-set-frozenset

Python tools for research 7

https://docs.python.org/3.7/library/stdtypes.html#set-types-set-frozenset

< dictionaries

» don't do this

for k1 mydict . keys():

v = mydictlk]

< lists

=)

for item in mylist:
print(1, i1tem)
Tt

Python tools for research

looping

<+ do this

for 1, 1tem 1n
enumerate(mylist):
print(1, 1tem)

for k., vih mydict items):

74

dictionary tricks

data = {} import collections
for r in response: data = collections.defaultdict(int)
if r not in data: for r in response:
data[r] =1 data[r] += 1
else:
data[r] += 1

data = collections.Counter(response)

data.most_common()

files

+» Don't concatenate directories and filenames

[vair = output/Z
filename = mydir + "filename.json"

filename = os.path.join(mydir, "filename.json")

+ WWorks even if mydir doesn't end in a /

+ Making a directory tree

os.makedirs(os.path.join("full", "directory", "path"), exist_ok=True)

exist_ok means that it won't fail if the directory already
exists (os.mkdir will fail)

Python tools for research

the internet

NS

» the requests package makes loading data from the internet
easy, use it!

+ Remember to consider your failure cases

NS

» site down, url doesn't exist, data isn't the format that you
expect

+ https://www.peterbe.com/plog/best-practice-with-retries-
with-requests

Python tools for research

7

https://www.peterbe.com/plog/best-practice-with-retries-with-requests
https://www.peterbe.com/plog/best-practice-with-retries-with-requests

requests

import requests
response = requests.get('https://api.ipify.org?format=jso

from requests.adapters import HTTPAdapter

from requests.packages.urllib3.util.retry import Retry
ret = Retry(total=10, backoff_factor=0.2)

adaptor = HTTPAdapter(max_retries=ret)

session = requests.Session()

session.mount('https://', adaptor)

result = session.get('https://api.ipify.org?format=json’)
AR
data = result.raise_for_status()
parsed = data.json()
except HTTPError:
there was an error
except ValueError:
1t wasn't json

Python tools for research

). gsoné)

https://api.ipify.org?format=json
https://api.ipify.org?format=json

more t1ps

+ https://realpython.com/

+ Python 3 cookbook: http://shop.oreilly.com/product/

063692002/7072.do

Pythor’i-- .
Cookbook

O'RELLY"

Python tools for research

Python Cookbook, 3rd Edition
Recipes for Mastering Python 3

By Brian Jones, David Beazley

Publisher: O'Reilly Media
Release Date: May 2013
Pages: 706

If you need help writing programs in Python 3, or want to update olc
practical recipes written and tested with Python 3.3, this unique cool
focus on modern tools and idioms.

Inside, you'll find complete recipes for more than a dozen topics, co\
wide variety of application domains. Each recipe contains code samp
discussion about how and why the solution works.

79

https://realpython.com/
http://shop.oreilly.com/product/0636920027072.do
http://shop.oreilly.com/product/0636920027072.do

