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Python tools for research

❖ Last time: general comments on starting project, writing code, 
tests, publishing code, dealing with data

❖ Now: some specific tips on how to organise your python 
projects better, and to write better* code  
 
 
 
 
* organised, easy to maintain, easy to understand, faster
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We're back!
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❖ project setup and dependency management

❖ code best practises for layout and separation

❖ defensive programming

❖ strings and files

❖ data formats

❖ notebooks

❖ visualisations

❖ some other python tips
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Overview
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❖ ISMIR tutorial from last year

❖ MTG python tips: https://mtg.github.io/pymtg/tips/tips.html

❖ Not in this presentation (No time)

❖ Testing

❖ Docker

❖ More interesting things in the python standard library

❖ MIR tools (!)

!4

Other material

https://mtg.github.io/pymtg/tips/tips.html


first things first



don't use python 2
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❖ You need to know what dependencies are needed to run 
your software

❖ Sometimes a library might change from version to version, 
keep a record of which one you used

❖ Different projects of yours may need different versions of 
libraries, or of python  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Setting up projects
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❖ You should never need to use sudo to install dependencies 
with pip

❖ virtualenv, pipenv, anaconda 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Installing python dependencies
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❖ $ virtualenv env  
Using base prefix '/Users/alastair/.pyenv/versions/3.7.2'  
New python executable in /Users/alastair/2019-05-mipfrontiers/
env/bin/python3.7  
Also creating executable in /Users/alastair/2019-05-mipfrontiers/
env/bin/python  
Installing setuptools, pip, wheel...  
done.

❖ What should your environment be called? It's up to you. I use env, others 
use ve

❖ https://virtualenv.pypa.io/en/latest/
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virtualenv

https://virtualenv.pypa.io/en/latest/
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❖ $ ls env/  
bin include lib

❖ $ ls env/bin/  
activate       easy_install    python-config  
activate.csh    easy_install-3.7 python3  
activate.fish    pip          python3.7  
activate.ps1    pip3       wheel  
activate.xsh    pip3.7  
activate_this.py python

❖ Turn on your environment 
. env/bin/activate  
source env/bin/activate
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Fully-contained python
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❖ (env) $ pip install numpy matplotlib  
 [...]  
Successfully installed cycler-0.10.0 kiwisolver-1.1.0 matplotlib-3.1.0 
numpy-1.16.3 pyparsing-2.4.0 python-dateutil-2.8.0 six-1.12.0

❖ $ ls env/lib/python3.7/site-packages/  
__pycache__ matplotlib-3.1.0.dist-info pyparsing.py  
cycler-0.10.0.dist-info mpl_toolkits
python_dateutil-2.8.0.dist-info  
cycler.py numpy setuptools  
dateutil numpy-1.16.3.dist-info
setuptools-41.0.1.dist-info  
easy_install.py pip six-1.12.0.dist-info  
kiwisolver-1.1.0.dist-info pip-19.1.1.dist-info six.py  
kiwisolver.cpython-37m-darwin.so pkg_resources wheel  
matplotlib pylab.py wheel-0.33.4.dist-info  
matplotlib-3.1.0-py3.7-nspkg.pth pyparsing-2.4.0.dist-info
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pip
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❖ If you run pip or python, the version from your virtualenv will 
be called

❖ This python has access to all of the packages you installed

how?

❖ the activate script changes $PATH
❖ (env) $ which python  

/Users/alastair/2019-05-mipfrontiers/env/bin/python  
(env) $ which python  
/Users/alastair/2019-05-mipfrontiers/env/bin/pip
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why does a venv work?
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❖ You can actually run python or pip with a full path, and it will 
use the dependencies from your virtualenv

❖ This is really useful when you're calling your python from a 
script (e.g. on a cluster)

❖ /scratch/aporter/project/env/bin/python -c 'import numpy; 
print(numpy.array(2))'

!13

What does this mean?
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❖ pip freeze > requirements.txt

❖ $ cat requirements.txt  
cycler==0.10.0  
kiwisolver==1.1.0  
matplotlib==3.1.0  
numpy==1.16.3  
pyparsing==2.4.0  
python-dateutil==2.8.0  
six==1.12.0

❖ pip install -r requirements.txt
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saving and loading dependencies
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❖ virtualenv and pip have some problems

❖ if you use pip freeze, you don't know if package versions 
are selected specifically, or if they just came from a 
dependency

❖ some people don't like the behaviour of the activate script

❖ virtualenv and pip are two different programs, pipenv does 
the same as both in one program

❖ https://docs.pipenv.org/en/latest/
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pipenv

https://docs.pipenv.org/en/latest/
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❖ install once with pip install pipenv, or with homebrew

❖ pipenv install numpy

❖ Will automatically create a virtualenv if you don't already 
have one

❖ will create a Pipfile (your explicit packages) and 
Pipfile.lock (implicit dependencies, with exact versions)
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using pipenv
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❖ https://virtualenvwrapper.readthedocs.io/en/latest/

❖ Allows you to give names to your virtualenvs, manages the 
location of them

❖ https://docs.conda.io/en/latest/

❖ Dependency and environment management for Python and 
other languages

❖ Contains compiled binary packages for a lot of software, 
including non-python software
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virtualenvwrapper and anaconda

https://virtualenvwrapper.readthedocs.io/en/latest/
https://docs.conda.io/en/latest/


let's write some code
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❖ If you're writing a software package to distribute to other 
people, consider your package name

❖ does it already exist on https://pypi.org/ ?

❖ README.md file, basic outline about what this package does

❖ License  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Project structure

https://pypi.org/
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❖ mirth/  
  __init__.py  
  data.py  
process.py  
README.md  
COPYING  
setup.py
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Package structure



stop
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❖ git init

❖ git add README.md requirements.txt Pipfile

❖ git commit

❖ git remote add origin

❖ git push -u origin master

❖ Don't use git add . because you might add items that you 
don't want in the repository
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git init
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❖ Some types of automatically generated files shouldn't be 
included in your git repository

❖ .pyc files (compiled python code)

❖ your entire virtual env

❖ .DS_Store (from a mac)

❖ put these in a .gitignore file so that you don't accidentally 
commit them  
https://github.com/github/gitignore
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using git efficiently

https://github.com/github/gitignore
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❖ Other types of files you shouldn't include

❖ Large data files

❖ github has a limit of ~100MB per file, 1000MB per repo

❖ If you have small data that you want to include, it's generally 
OK, but remember that this stays in your git history forever

❖ Secrets! Be very careful about access codes (e.g. for AWS). 
People scan github and will steal your key within seconds  
https://medium.com/@nagguru/exposing-your-aws-access-keys-
on-github-can-be-extremely-costly-a-personal-
experience-960be7aad039
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git out of here

https://medium.com/@nagguru/exposing-your-aws-access-keys-on-github-can-be-extremely-costly-a-personal-experience-960be7aad039
https://medium.com/@nagguru/exposing-your-aws-access-keys-on-github-can-be-extremely-costly-a-personal-experience-960be7aad039
https://medium.com/@nagguru/exposing-your-aws-access-keys-on-github-can-be-extremely-costly-a-personal-experience-960be7aad039
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❖ Python doesn't put many requirements on the structure or 
appearance of your code

❖ However, consistency in code makes it easier to see patterns, 
find mistakes

❖ Choose a style and stick with it, but use tools to help you 

❖ The pep8 styleguide lists some best-practises 
https://www.python.org/dev/peps/pep-0008/

❖ black will automatically format your code for you 
https://github.com/python/black
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code layout

https://www.python.org/dev/peps/pep-0008/
https://github.com/python/black
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what problems do you see?
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❖ imports not ordered

❖ imports not separated

❖ unused import

❖ spacing between functions

❖ extra spaces in fuction def

❖ no spaces in assignment

❖ reserved keyword as variable

❖ use of [] in function definition

❖ no main guard

❖ sys.argv instead of argument parser
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what problems do you see?
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❖ the dynamic nature of python makes it easy to make mistakes 
by missing variables, ordering code incorrectly, or making 
spelling mistakes

❖ pylint is a static code checker to look at your code and find 
common errors

❖ flake8 integrates pylint checks and pep8 formatting checks: 
https://flake8.readthedocs.io/en/latest/index.html
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code linting

https://flake8.readthedocs.io/en/latest/index.html
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❖ $ flake8 process.py  
process.py:5:1: F401 'json' imported but unused  
process.py:7:1: E302 expected 2 blank lines, found 1  
process.py:7:16: E251 unexpected spaces around keyword / 
parameter equals  
process.py:7:18: E251 unexpected spaces around keyword / 
parameter equals  
process.py:7:21: E203 whitespace before ','  
process.py:8:5: F841 local variable 'a' is assigned to but 
never used  
process.py:8:6: E225 missing whitespace around operator  
process.py:13:1: E305 expected 2 blank lines after class or 
function definition, found 1  
process.py:13:21: W292 no newline at end of file
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❖ pycharm does this for you!

!30

real-time tools for linting and formatting
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❖ Doesn't rename variables 
for you 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after formatting
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❖ Find some tutorials for your favourite text editor and learn 
how to let them help you

❖ PyCharm:

❖ https://twitter.com/pycharm

❖ 42 PyCharm tips and tricks: https://www.youtube.com/
watch?v=NSuHlqD2y94 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learn your tools

https://twitter.com/pycharm
https://www.youtube.com/watch?v=NSuHlqD2y94
https://www.youtube.com/watch?v=NSuHlqD2y94
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❖ Don't write all of your script at the same level without functions 
or a main guard

❖ Why?

❖ if you import this file, it will  
re-run everything

❖ if a processing step fails, you  
have to start again

❖ if you need to change a  
parameter you have to  
make many edits in the file
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scripts
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good script
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❖ Save intermediate data

❖ If you want to change 
your plot layout you 
don't need to 
recompute data 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plotting in a separate file
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❖ how do you remember what parameter is for what? 
(documentation!)  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functions
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❖ are parameter names important? Make them required

❖ https://python-3-for-scientists.readthedocs.io/en/latest/python3_advanced.html
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named function parameters

https://python-3-for-scientists.readthedocs.io/en/latest/python3_advanced.html
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❖ Ensure that the values of your parameters are correct

❖ This is not checked by python when you run it, but external 
tools (e.g. pycharm) can use it for notifying you of potential 
errors 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type hints
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❖ Python's dynamic nature makes it easy to make mistakes 
 

❖ Did you get this data from an external source?

❖ first thing to ask is "what happens if this data isn't available?"

❖ Are you sure that all items in the dictionary have the key that you 
want?

❖ KeyError, AttributeError - imagine if this happens after it's been 
running for hours or days

!39

defensive programming
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❖ Getting data from the web, what if the site goes down?

❖ always consider possible HTTPErrors

❖ reading files, what if there's a parsing error?

❖ json can raise ValueError

❖ If the file doesn't exist?

❖ Or the folder that you want to write something to?

❖ if you call int() to turn a string into an integer, what if it's not 
an integer?
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defensive programming
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❖ Tools can help

❖ Think carefully about your data and the operations you are 
performing on it

❖ Never trust data from other people (or even from yourself)
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defensive programming
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❖ Lots of people complained about the changes to strings in python 3, but 
I think it's made things a lot simpler

❖ written text is a string

❖ when you read and write files, the  
string is turned into bytes using an  
encoding (e.g. utf-8)

❖ some functions implicitly perform  
this translation for you, but you can 
force it if you need to

❖ https://medium.com/@andreacolangelo/strings-unicode-and-bytes-in-
python-3-everything-you-always-wanted-to-know-27dc02ff2686
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strings!

https://medium.com/@andreacolangelo/strings-unicode-and-bytes-in-python-3-everything-you-always-wanted-to-know-27dc02ff2686
https://medium.com/@andreacolangelo/strings-unicode-and-bytes-in-python-3-everything-you-always-wanted-to-know-27dc02ff2686
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reading strings
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❖ Why might you want to read bytes?

❖ data file that you want to process

❖ spectrogram images?

❖ manually-encoded data 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reading bytes
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strings from the internet
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❖ Reading in reverse!

❖ Make sure everything is a string and use implicit conversion 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writing strings



Python tools for research

❖ or make sure everything is a byte and use explicit conversion 
 
 
 
 
 
 
 
 
 

!47

writing strings
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❖ Do you have more than 5,000 items? split them into multiple 
folders based on part of the filename or id

❖ Why? the way filesystems work can make it slow to get 
listings of files when there are thousands of files in a 
directory 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storing data on disk
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❖ use os.walk to get a list of filenames in a directory  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reading files
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❖ Consider also how many files you want to write

❖ Lots of small files (10s of thousands or more) means that 
you'll spend a lot of time just opening or writing files

❖ This can impact runtime

❖ Consider bundling data into fewer larger files

❖ Don't read/write the same file over and over again 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how many files should you have?
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❖ What format should you use to store data?

❖ Python has many formats that it can read and write natively

❖ pickle, json, csv

❖ Many other libraries that do similar things, depending on the 
type of data

❖ numpy array, hdf5

❖ use modules for these libraries, don't write it yourself

!51

file formats
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❖ A representation of the memory structure of the object in 
python

❖ Quite fast to read and write

❖ Has some different versions - e.g. you can't open a pickle 
from python 3 in python 2

❖ Don't share data to other people with it - a pickle can 
contain executable code and is therefore a potential 
security issue. Use a data format instead

!52

pickle
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❖ See our CSV tip: https://mtg.github.io/pymtg/tips/tips.html

❖ always use the csv module

❖ Don't do this:  
data = open('myfile.csv').read()  
lines = data.split('\n')  
rows = lines[0].split(',')

❖ pandas will read csv files, but they must be "square"  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csv

https://mtg.github.io/pymtg/tips/tips.html
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❖ Remember that you can read large files line by line to get just 
the data that you need 
with open('myfile.csv') as fp:  
    r = csv.reader(fp)  
    for line in r:  
        data.append(line[9])  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csv
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❖ json is easy to deal with, and  
reflects python dictionaries really  
well

❖ However, it's really inefficient

❖ You load all of the data into 
memory to read just a single field 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json
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❖ Consider the size of repeated key names

❖ if you have 1000 items with 5 keys each, length 10 that's 
almost half a megabyte of just keys!

❖ numbers are stored as text! pitch here is 7 bytes (56 bits)

❖ do you really need decimal points in Hz? a 16-bit integer 
would store the same data

❖ spaces after key names are optional, as are newlines

❖ save 2 bytes per line  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improving json
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❖ with open(filename, 'w') as fp:  
    json.write(data, fp, indent=0, separators=(',', ':'))

❖ but! if you have newlines, git diffs look good. consider your data 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json caveats
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❖ Some filesize limits to keep in mind

❖ FAT32 has a 4gb file limit

❖ The original zip format has a 4gb archive size limit

❖ People might not always want to download a huge archive to 
get just a small amount of data

❖ if you're splitting data up into folders, consider making 
archives of each folder - smaller to download
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other file limitations
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❖ https://docs.google.com/presentation/d/1n2RlMdmv1p25Xy5thJUhkKGvjtV-dkAIsUXP-
AL4ffI/edit#slide=id.g362da58057_0_1

❖ video of presentation https://www.youtube.com/watch?v=7jiPeIFXb6U
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notebooks

https://docs.google.com/presentation/d/1n2RlMdmv1p25Xy5thJUhkKGvjtV-dkAIsUXP-AL4ffI/edit#slide=id.g362da58057_0_1
https://docs.google.com/presentation/d/1n2RlMdmv1p25Xy5thJUhkKGvjtV-dkAIsUXP-AL4ffI/edit#slide=id.g362da58057_0_1
https://www.youtube.com/watch?v=7jiPeIFXb6U
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notebooks can be great...
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❖ You can execute cells out of order, encouraging you to not 
think about your program flow

❖ The editor doesn't have a lot of great functionality that other 
tools give you (code formatting, autocomplete, code 
checking)

❖ It encourages you to not think about the structure and 
reproducibility of your code

❖ difficult to test

❖ difficult to copy/paste examples
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but...
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how do you use git?
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❖ Go and watch the presentation

❖ This doesn't mean that you shouldn't use notebooks. Know their 
strengths and weaknesses

❖ A good compromise is to write your code in a file and then use 
a notebook to show it off and display visualisations

❖ your code benefits from source control, tests

❖ you still get pretty inline pictures, and you can tell a story with 
your code

!63

notebook recommendations
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❖ presentation of your data is important to get your point 
across

❖ be careful with matplotlib default settings, they often don't 
look great

❖ If you have time, play around with the colour pallets and 
themes (https://matplotlib.org/users/dflt_style_changes.html)

❖ Take a look at seaborn for graphs (https://seaborn.pydata.org/)

❖ Think about the layout of your data
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visualisation

https://matplotlib.org/users/dflt_style_changes.html
https://seaborn.pydata.org/
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❖ Take some time to think about the data that you're presenting

❖ https://www.darkhorseanalytics.com/blog/data-looks-better-naked
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data-to-ink ratio

https://www.darkhorseanalytics.com/blog/data-looks-better-naked
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❖ see also https://gorelik.net/2018/03/21/three-most-common-
mistakes-in-data-visualization-%E2%80%A8and-how-to-avoid-
them-now-the-slides/

!66

can you remove more?

https://gorelik.net/2018/03/21/three-most-common-mistakes-in-data-visualization-%E2%80%A8and-how-to-avoid-them-now-the-slides/
https://gorelik.net/2018/03/21/three-most-common-mistakes-in-data-visualization-%E2%80%A8and-how-to-avoid-them-now-the-slides/
https://gorelik.net/2018/03/21/three-most-common-mistakes-in-data-visualization-%E2%80%A8and-how-to-avoid-them-now-the-slides/
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❖ Pie charts make it difficult for people to intuit ratios

❖ https://www.darkhorseanalytics.com/blog/salvaging-the-pie
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pie charts

https://www.darkhorseanalytics.com/blog/salvaging-the-pie
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❖ https://www.darkhorseanalytics.com/blog/clear-off-the-table
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tables

https://www.darkhorseanalytics.com/blog/clear-off-the-table
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❖ like visualisations, consider what data you can remove 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tables in latex
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❖ use booktabs for nice looking tables 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tables in latex



a bunch of python tips
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❖ we publish "tip of the week" (every few weeks/once a month)

❖ See them here: https://mtg.github.io/pymtg/tips/tips.html  
 
 
 
 
 
 
 
 

!72

mtg python tips

https://mtg.github.io/pymtg/tips/tips.html
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❖ As a list gets longer, checking for set membership takes 
longer 
>>> mylist = [1, 2, 3, 4, ...., 1million, ...., 2million]  
>>> 50 in mylist  
False

❖ Use a set when you want to check  
>>> myset = set(mylist)  
>>> 50 in myset    # <- super fast

❖ https://docs.python.org/3.7/library/stdtypes.html#set-types-set-frozenset

!73

speed of access in datastructures

https://docs.python.org/3.7/library/stdtypes.html#set-types-set-frozenset
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❖ dictionaries

❖ don't do this 
for k in mydict.keys():  
    v = mydict[k]

❖ lists

❖ i = 0  
for item in mylist:  
    print(i, item)  
    i += 1

❖ do this 
for k, v in mydict.items():  
    ...

❖ for i, item in 
enumerate(mylist):  
    print(i, item)

!74

looping
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data = {}

for r in response:

    if r not in data:

        data[r] = 1

    else:

        data[r] += 1  
 
 
 
 
 
 
 
 
 

import collections

data = collections.defaultdict(int)

for r in response:

    data[r] += 1

 
 

data = collections.Counter(response)

data.most_common()  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❖ Don't concatenate directories and filenames

❖ mydir = "output/"  
filename = mydir + "filename.json"

❖ filename = os.path.join(mydir, "filename.json")

❖ Works even if mydir doesn't end in a /

❖ Making a directory tree
❖ os.makedirs(os.path.join("full", "directory", "path"), exist_ok=True)

❖ exist_ok means that it won't fail if the directory already 
exists (os.mkdir will fail)

!76

files
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❖ the requests package makes loading data from the internet 
easy, use it!

❖ Remember to consider your failure cases

❖ site down, url doesn't exist, data isn't the format that you 
expect

❖ https://www.peterbe.com/plog/best-practice-with-retries-
with-requests
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the internet

https://www.peterbe.com/plog/best-practice-with-retries-with-requests
https://www.peterbe.com/plog/best-practice-with-retries-with-requests
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❖ import requests  
response = requests.get('https://api.ipify.org?format=json').json()

❖ from requests.adapters import HTTPAdapter  
from requests.packages.urllib3.util.retry import Retry  
ret = Retry(total=10, backoff_factor=0.2)  
adaptor = HTTPAdapter(max_retries=ret)  
session = requests.Session()  
session.mount('https://', adaptor)  
 
result = session.get('https://api.ipify.org?format=json')  
try:  
    data = result.raise_for_status()  
    parsed = data.json()  
except HTTPError:  
    # there was an error  
except ValueError:  
    # it wasn't json
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requests

https://api.ipify.org?format=json
https://api.ipify.org?format=json
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❖ https://realpython.com/

❖ Python 3 cookbook: http://shop.oreilly.com/product/
0636920027072.do 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more tips

https://realpython.com/
http://shop.oreilly.com/product/0636920027072.do
http://shop.oreilly.com/product/0636920027072.do

