
Python tools for MIR research
Alastair Porter
23 May 2019

MIP Frontiers Summer School

Python tools for research

❖ Last time: general comments on starting project, writing code,
tests, publishing code, dealing with data

❖ Now: some specific tips on how to organise your python
projects better, and to write better* code  
 
 
 
 
* organised, easy to maintain, easy to understand, faster

!2

We're back!

Python tools for research

❖ project setup and dependency management

❖ code best practises for layout and separation

❖ defensive programming

❖ strings and files

❖ data formats

❖ notebooks

❖ visualisations

❖ some other python tips

!3

Overview

Python tools for research

❖ ISMIR tutorial from last year

❖ MTG python tips: https://mtg.github.io/pymtg/tips/tips.html

❖ Not in this presentation (No time)

❖ Testing

❖ Docker

❖ More interesting things in the python standard library

❖ MIR tools (!)

!4

Other material

https://mtg.github.io/pymtg/tips/tips.html

first things first

don't use python 2

Python tools for research

❖ You need to know what dependencies are needed to run
your software

❖ Sometimes a library might change from version to version,
keep a record of which one you used

❖ Different projects of yours may need different versions of
libraries, or of python  
 
 
 

!7

Setting up projects

Python tools for research

❖ You should never need to use sudo to install dependencies
with pip

❖ virtualenv, pipenv, anaconda 
 
 
 
 
 

!8

Installing python dependencies

Python tools for research

❖ $ virtualenv env  
Using base prefix '/Users/alastair/.pyenv/versions/3.7.2'  
New python executable in /Users/alastair/2019-05-mipfrontiers/
env/bin/python3.7  
Also creating executable in /Users/alastair/2019-05-mipfrontiers/
env/bin/python  
Installing setuptools, pip, wheel...  
done.

❖ What should your environment be called? It's up to you. I use env, others
use ve

❖ https://virtualenv.pypa.io/en/latest/

!9

virtualenv

https://virtualenv.pypa.io/en/latest/

Python tools for research

❖ $ ls env/  
bin include lib

❖ $ ls env/bin/  
activate easy_install python-config  
activate.csh easy_install-3.7 python3  
activate.fish pip python3.7  
activate.ps1 pip3 wheel  
activate.xsh pip3.7  
activate_this.py python

❖ Turn on your environment 
. env/bin/activate  
source env/bin/activate

!10

Fully-contained python

Python tools for research

❖ (env) $ pip install numpy matplotlib  
 [...]  
Successfully installed cycler-0.10.0 kiwisolver-1.1.0 matplotlib-3.1.0
numpy-1.16.3 pyparsing-2.4.0 python-dateutil-2.8.0 six-1.12.0

❖ $ ls env/lib/python3.7/site-packages/  
__pycache__ matplotlib-3.1.0.dist-info pyparsing.py  
cycler-0.10.0.dist-info mpl_toolkits
python_dateutil-2.8.0.dist-info  
cycler.py numpy setuptools  
dateutil numpy-1.16.3.dist-info
setuptools-41.0.1.dist-info  
easy_install.py pip six-1.12.0.dist-info  
kiwisolver-1.1.0.dist-info pip-19.1.1.dist-info six.py  
kiwisolver.cpython-37m-darwin.so pkg_resources wheel  
matplotlib pylab.py wheel-0.33.4.dist-info  
matplotlib-3.1.0-py3.7-nspkg.pth pyparsing-2.4.0.dist-info

!11

pip

Python tools for research

❖ If you run pip or python, the version from your virtualenv will
be called

❖ This python has access to all of the packages you installed

how?

❖ the activate script changes $PATH
❖ (env) $ which python  

/Users/alastair/2019-05-mipfrontiers/env/bin/python  
(env) $ which python  
/Users/alastair/2019-05-mipfrontiers/env/bin/pip

!12

why does a venv work?

Python tools for research

❖ You can actually run python or pip with a full path, and it will
use the dependencies from your virtualenv

❖ This is really useful when you're calling your python from a
script (e.g. on a cluster)

❖ /scratch/aporter/project/env/bin/python -c 'import numpy;
print(numpy.array(2))'

!13

What does this mean?

Python tools for research

❖ pip freeze > requirements.txt

❖ $ cat requirements.txt  
cycler==0.10.0  
kiwisolver==1.1.0  
matplotlib==3.1.0  
numpy==1.16.3  
pyparsing==2.4.0  
python-dateutil==2.8.0  
six==1.12.0

❖ pip install -r requirements.txt

!14

saving and loading dependencies

Python tools for research

❖ virtualenv and pip have some problems

❖ if you use pip freeze, you don't know if package versions
are selected specifically, or if they just came from a
dependency

❖ some people don't like the behaviour of the activate script

❖ virtualenv and pip are two different programs, pipenv does
the same as both in one program

❖ https://docs.pipenv.org/en/latest/

!15

pipenv

https://docs.pipenv.org/en/latest/

Python tools for research

❖ install once with pip install pipenv, or with homebrew

❖ pipenv install numpy

❖ Will automatically create a virtualenv if you don't already
have one

❖ will create a Pipfile (your explicit packages) and
Pipfile.lock (implicit dependencies, with exact versions)

!16

using pipenv

Python tools for research

❖ https://virtualenvwrapper.readthedocs.io/en/latest/

❖ Allows you to give names to your virtualenvs, manages the
location of them

❖ https://docs.conda.io/en/latest/

❖ Dependency and environment management for Python and
other languages

❖ Contains compiled binary packages for a lot of software,
including non-python software

!17

virtualenvwrapper and anaconda

https://virtualenvwrapper.readthedocs.io/en/latest/
https://docs.conda.io/en/latest/

let's write some code

Python tools for research

❖ If you're writing a software package to distribute to other
people, consider your package name

❖ does it already exist on https://pypi.org/ ?

❖ README.md file, basic outline about what this package does

❖ License  
 
 
 

!19

Project structure

https://pypi.org/

Python tools for research

❖ mirth/  
 __init__.py  
 data.py  
process.py  
README.md  
COPYING  
setup.py

!20

Package structure

stop

Python tools for research

❖ git init

❖ git add README.md requirements.txt Pipfile

❖ git commit

❖ git remote add origin

❖ git push -u origin master

❖ Don't use git add . because you might add items that you
don't want in the repository

!22

git init

Python tools for research

❖ Some types of automatically generated files shouldn't be
included in your git repository

❖ .pyc files (compiled python code)

❖ your entire virtual env

❖ .DS_Store (from a mac)

❖ put these in a .gitignore file so that you don't accidentally
commit them  
https://github.com/github/gitignore

!23

using git efficiently

https://github.com/github/gitignore

Python tools for research

❖ Other types of files you shouldn't include

❖ Large data files

❖ github has a limit of ~100MB per file, 1000MB per repo

❖ If you have small data that you want to include, it's generally
OK, but remember that this stays in your git history forever

❖ Secrets! Be very careful about access codes (e.g. for AWS).
People scan github and will steal your key within seconds  
https://medium.com/@nagguru/exposing-your-aws-access-keys-
on-github-can-be-extremely-costly-a-personal-
experience-960be7aad039

!24

git out of here

https://medium.com/@nagguru/exposing-your-aws-access-keys-on-github-can-be-extremely-costly-a-personal-experience-960be7aad039
https://medium.com/@nagguru/exposing-your-aws-access-keys-on-github-can-be-extremely-costly-a-personal-experience-960be7aad039
https://medium.com/@nagguru/exposing-your-aws-access-keys-on-github-can-be-extremely-costly-a-personal-experience-960be7aad039

Python tools for research

❖ Python doesn't put many requirements on the structure or
appearance of your code

❖ However, consistency in code makes it easier to see patterns,
find mistakes

❖ Choose a style and stick with it, but use tools to help you

❖ The pep8 styleguide lists some best-practises 
https://www.python.org/dev/peps/pep-0008/

❖ black will automatically format your code for you 
https://github.com/python/black

!25

code layout

https://www.python.org/dev/peps/pep-0008/
https://github.com/python/black

Python tools for research !26

what problems do you see?

Python tools for research

❖ imports not ordered

❖ imports not separated

❖ unused import

❖ spacing between functions

❖ extra spaces in fuction def

❖ no spaces in assignment

❖ reserved keyword as variable

❖ use of [] in function definition

❖ no main guard

❖ sys.argv instead of argument parser

!27

what problems do you see?

Python tools for research

❖ the dynamic nature of python makes it easy to make mistakes
by missing variables, ordering code incorrectly, or making
spelling mistakes

❖ pylint is a static code checker to look at your code and find
common errors

❖ flake8 integrates pylint checks and pep8 formatting checks:
https://flake8.readthedocs.io/en/latest/index.html

!28

code linting

https://flake8.readthedocs.io/en/latest/index.html

Python tools for research

❖ $ flake8 process.py  
process.py:5:1: F401 'json' imported but unused  
process.py:7:1: E302 expected 2 blank lines, found 1  
process.py:7:16: E251 unexpected spaces around keyword /
parameter equals  
process.py:7:18: E251 unexpected spaces around keyword /
parameter equals  
process.py:7:21: E203 whitespace before ','  
process.py:8:5: F841 local variable 'a' is assigned to but
never used  
process.py:8:6: E225 missing whitespace around operator  
process.py:13:1: E305 expected 2 blank lines after class or
function definition, found 1  
process.py:13:21: W292 no newline at end of file

!29

Python tools for research

❖ pycharm does this for you!

!30

real-time tools for linting and formatting

Python tools for research

❖ Doesn't rename variables 
for you 
 
 
 
 
 
 
 
 

!31

after formatting

Python tools for research

❖ Find some tutorials for your favourite text editor and learn
how to let them help you

❖ PyCharm:

❖ https://twitter.com/pycharm

❖ 42 PyCharm tips and tricks: https://www.youtube.com/
watch?v=NSuHlqD2y94 
 
 
 

!32

learn your tools

https://twitter.com/pycharm
https://www.youtube.com/watch?v=NSuHlqD2y94
https://www.youtube.com/watch?v=NSuHlqD2y94

Python tools for research

❖ Don't write all of your script at the same level without functions
or a main guard

❖ Why?

❖ if you import this file, it will  
re-run everything

❖ if a processing step fails, you  
have to start again

❖ if you need to change a  
parameter you have to  
make many edits in the file

!33

scripts

Python tools for research !34

good script

Python tools for research

❖ Save intermediate data

❖ If you want to change
your plot layout you
don't need to
recompute data 
 
 
 
 

!35

plotting in a separate file

Python tools for research

❖ how do you remember what parameter is for what?
(documentation!)  
 
 
 
 
 
 
 
 
 

!36

functions

Python tools for research

❖ are parameter names important? Make them required

❖ https://python-3-for-scientists.readthedocs.io/en/latest/python3_advanced.html

!37

named function parameters

https://python-3-for-scientists.readthedocs.io/en/latest/python3_advanced.html

Python tools for research

❖ Ensure that the values of your parameters are correct

❖ This is not checked by python when you run it, but external
tools (e.g. pycharm) can use it for notifying you of potential
errors 
 
 
 
 
 
 

!38

type hints

Python tools for research

❖ Python's dynamic nature makes it easy to make mistakes 
 

❖ Did you get this data from an external source?

❖ first thing to ask is "what happens if this data isn't available?"

❖ Are you sure that all items in the dictionary have the key that you
want?

❖ KeyError, AttributeError - imagine if this happens after it's been
running for hours or days

!39

defensive programming

Python tools for research

❖ Getting data from the web, what if the site goes down?

❖ always consider possible HTTPErrors

❖ reading files, what if there's a parsing error?

❖ json can raise ValueError

❖ If the file doesn't exist?

❖ Or the folder that you want to write something to?

❖ if you call int() to turn a string into an integer, what if it's not
an integer?

!40

defensive programming

Python tools for research

❖ Tools can help

❖ Think carefully about your data and the operations you are
performing on it

❖ Never trust data from other people (or even from yourself)

!41

defensive programming

Python tools for research

❖ Lots of people complained about the changes to strings in python 3, but
I think it's made things a lot simpler

❖ written text is a string

❖ when you read and write files, the  
string is turned into bytes using an  
encoding (e.g. utf-8)

❖ some functions implicitly perform  
this translation for you, but you can 
force it if you need to

❖ https://medium.com/@andreacolangelo/strings-unicode-and-bytes-in-
python-3-everything-you-always-wanted-to-know-27dc02ff2686

!42

strings!

https://medium.com/@andreacolangelo/strings-unicode-and-bytes-in-python-3-everything-you-always-wanted-to-know-27dc02ff2686
https://medium.com/@andreacolangelo/strings-unicode-and-bytes-in-python-3-everything-you-always-wanted-to-know-27dc02ff2686

Python tools for research !43

reading strings

Python tools for research

❖ Why might you want to read bytes?

❖ data file that you want to process

❖ spectrogram images?

❖ manually-encoded data 
 
 
 
 

!44

reading bytes

Python tools for research !45

strings from the internet

Python tools for research

❖ Reading in reverse!

❖ Make sure everything is a string and use implicit conversion 
 
 
 
 
 
 
 
 

!46

writing strings

Python tools for research

❖ or make sure everything is a byte and use explicit conversion 
 
 
 
 
 
 
 
 
 

!47

writing strings

Python tools for research

❖ Do you have more than 5,000 items? split them into multiple
folders based on part of the filename or id

❖ Why? the way filesystems work can make it slow to get
listings of files when there are thousands of files in a
directory 
 
 
 
 

!48

storing data on disk

Python tools for research

❖ use os.walk to get a list of filenames in a directory  
 
 
 
 
 
 
 
 
 

!49

reading files

Python tools for research

❖ Consider also how many files you want to write

❖ Lots of small files (10s of thousands or more) means that
you'll spend a lot of time just opening or writing files

❖ This can impact runtime

❖ Consider bundling data into fewer larger files

❖ Don't read/write the same file over and over again 
 
 

!50

how many files should you have?

Python tools for research

❖ What format should you use to store data?

❖ Python has many formats that it can read and write natively

❖ pickle, json, csv

❖ Many other libraries that do similar things, depending on the
type of data

❖ numpy array, hdf5

❖ use modules for these libraries, don't write it yourself

!51

file formats

Python tools for research

❖ A representation of the memory structure of the object in
python

❖ Quite fast to read and write

❖ Has some different versions - e.g. you can't open a pickle
from python 3 in python 2

❖ Don't share data to other people with it - a pickle can
contain executable code and is therefore a potential
security issue. Use a data format instead

!52

pickle

Python tools for research

❖ See our CSV tip: https://mtg.github.io/pymtg/tips/tips.html

❖ always use the csv module

❖ Don't do this:  
data = open('myfile.csv').read()  
lines = data.split('\n')  
rows = lines[0].split(',')

❖ pandas will read csv files, but they must be "square"  
 
 

!53

csv

https://mtg.github.io/pymtg/tips/tips.html

Python tools for research

❖ Remember that you can read large files line by line to get just
the data that you need 
with open('myfile.csv') as fp:  
 r = csv.reader(fp)  
 for line in r:  
 data.append(line[9])  
 
 
 
 
 

!54

csv

Python tools for research

❖ json is easy to deal with, and  
reflects python dictionaries really  
well

❖ However, it's really inefficient

❖ You load all of the data into 
memory to read just a single field 
 
 

!55

json

Python tools for research

❖ Consider the size of repeated key names

❖ if you have 1000 items with 5 keys each, length 10 that's
almost half a megabyte of just keys!

❖ numbers are stored as text! pitch here is 7 bytes (56 bits)

❖ do you really need decimal points in Hz? a 16-bit integer
would store the same data

❖ spaces after key names are optional, as are newlines

❖ save 2 bytes per line  

!56

improving json

Python tools for research

❖ with open(filename, 'w') as fp:  
 json.write(data, fp, indent=0, separators=(',', ':'))

❖ but! if you have newlines, git diffs look good. consider your data 
 
 
 
 
 
 
 

!57

json caveats

Python tools for research

❖ Some filesize limits to keep in mind

❖ FAT32 has a 4gb file limit

❖ The original zip format has a 4gb archive size limit

❖ People might not always want to download a huge archive to
get just a small amount of data

❖ if you're splitting data up into folders, consider making
archives of each folder - smaller to download

!58

other file limitations

Python tools for research

❖ https://docs.google.com/presentation/d/1n2RlMdmv1p25Xy5thJUhkKGvjtV-dkAIsUXP-
AL4ffI/edit#slide=id.g362da58057_0_1

❖ video of presentation https://www.youtube.com/watch?v=7jiPeIFXb6U

!59

notebooks

https://docs.google.com/presentation/d/1n2RlMdmv1p25Xy5thJUhkKGvjtV-dkAIsUXP-AL4ffI/edit#slide=id.g362da58057_0_1
https://docs.google.com/presentation/d/1n2RlMdmv1p25Xy5thJUhkKGvjtV-dkAIsUXP-AL4ffI/edit#slide=id.g362da58057_0_1
https://www.youtube.com/watch?v=7jiPeIFXb6U

Python tools for research !60

notebooks can be great...

Python tools for research

❖ You can execute cells out of order, encouraging you to not
think about your program flow

❖ The editor doesn't have a lot of great functionality that other
tools give you (code formatting, autocomplete, code
checking)

❖ It encourages you to not think about the structure and
reproducibility of your code

❖ difficult to test

❖ difficult to copy/paste examples

!61

but...

Python tools for research !62

how do you use git?

Python tools for research

❖ Go and watch the presentation

❖ This doesn't mean that you shouldn't use notebooks. Know their
strengths and weaknesses

❖ A good compromise is to write your code in a file and then use
a notebook to show it off and display visualisations

❖ your code benefits from source control, tests

❖ you still get pretty inline pictures, and you can tell a story with
your code

!63

notebook recommendations

Python tools for research

❖ presentation of your data is important to get your point
across

❖ be careful with matplotlib default settings, they often don't
look great

❖ If you have time, play around with the colour pallets and
themes (https://matplotlib.org/users/dflt_style_changes.html)

❖ Take a look at seaborn for graphs (https://seaborn.pydata.org/)

❖ Think about the layout of your data

!64

visualisation

https://matplotlib.org/users/dflt_style_changes.html
https://seaborn.pydata.org/

Python tools for research

❖ Take some time to think about the data that you're presenting

❖ https://www.darkhorseanalytics.com/blog/data-looks-better-naked

!65

data-to-ink ratio

https://www.darkhorseanalytics.com/blog/data-looks-better-naked

Python tools for research

❖ see also https://gorelik.net/2018/03/21/three-most-common-
mistakes-in-data-visualization-%E2%80%A8and-how-to-avoid-
them-now-the-slides/

!66

can you remove more?

https://gorelik.net/2018/03/21/three-most-common-mistakes-in-data-visualization-%E2%80%A8and-how-to-avoid-them-now-the-slides/
https://gorelik.net/2018/03/21/three-most-common-mistakes-in-data-visualization-%E2%80%A8and-how-to-avoid-them-now-the-slides/
https://gorelik.net/2018/03/21/three-most-common-mistakes-in-data-visualization-%E2%80%A8and-how-to-avoid-them-now-the-slides/

Python tools for research

❖ Pie charts make it difficult for people to intuit ratios

❖ https://www.darkhorseanalytics.com/blog/salvaging-the-pie

!67

pie charts

https://www.darkhorseanalytics.com/blog/salvaging-the-pie

Python tools for research

❖ https://www.darkhorseanalytics.com/blog/clear-off-the-table

!68

tables

https://www.darkhorseanalytics.com/blog/clear-off-the-table

Python tools for research

❖ like visualisations, consider what data you can remove 
 
 
 
 
 
 
 
 
 

!69

tables in latex

Python tools for research

❖ use booktabs for nice looking tables 
 
 
 
 
 
 
 
 
 

!70

tables in latex

a bunch of python tips

Python tools for research

❖ we publish "tip of the week" (every few weeks/once a month)

❖ See them here: https://mtg.github.io/pymtg/tips/tips.html  
 
 
 
 
 
 
 
 

!72

mtg python tips

https://mtg.github.io/pymtg/tips/tips.html

Python tools for research

❖ As a list gets longer, checking for set membership takes
longer 
>>> mylist = [1, 2, 3, 4,, 1million,, 2million]  
>>> 50 in mylist  
False

❖ Use a set when you want to check  
>>> myset = set(mylist)  
>>> 50 in myset # <- super fast

❖ https://docs.python.org/3.7/library/stdtypes.html#set-types-set-frozenset

!73

speed of access in datastructures

https://docs.python.org/3.7/library/stdtypes.html#set-types-set-frozenset

Python tools for research

❖ dictionaries

❖ don't do this 
for k in mydict.keys():  
 v = mydict[k]

❖ lists

❖ i = 0  
for item in mylist:  
 print(i, item)  
 i += 1

❖ do this 
for k, v in mydict.items():  
 ...

❖ for i, item in
enumerate(mylist):  
 print(i, item)

!74

looping

dictionary tricks

data = {}

for r in response:

 if r not in data:

 data[r] = 1

 else:

 data[r] += 1  
 
 
 
 
 
 
 
 
 

import collections

data = collections.defaultdict(int)

for r in response:

 data[r] += 1

 
 

data = collections.Counter(response)

data.most_common()  
 
 
 
 
 

Python tools for research

❖ Don't concatenate directories and filenames

❖ mydir = "output/"  
filename = mydir + "filename.json"

❖ filename = os.path.join(mydir, "filename.json")

❖ Works even if mydir doesn't end in a /

❖ Making a directory tree
❖ os.makedirs(os.path.join("full", "directory", "path"), exist_ok=True)

❖ exist_ok means that it won't fail if the directory already
exists (os.mkdir will fail)

!76

files

Python tools for research

❖ the requests package makes loading data from the internet
easy, use it!

❖ Remember to consider your failure cases

❖ site down, url doesn't exist, data isn't the format that you
expect

❖ https://www.peterbe.com/plog/best-practice-with-retries-
with-requests

!77

the internet

https://www.peterbe.com/plog/best-practice-with-retries-with-requests
https://www.peterbe.com/plog/best-practice-with-retries-with-requests

Python tools for research

❖ import requests  
response = requests.get('https://api.ipify.org?format=json').json()

❖ from requests.adapters import HTTPAdapter  
from requests.packages.urllib3.util.retry import Retry  
ret = Retry(total=10, backoff_factor=0.2)  
adaptor = HTTPAdapter(max_retries=ret)  
session = requests.Session()  
session.mount('https://', adaptor)  
 
result = session.get('https://api.ipify.org?format=json')  
try:  
 data = result.raise_for_status()  
 parsed = data.json()  
except HTTPError:  
 # there was an error  
except ValueError:  
 # it wasn't json

!78

requests

https://api.ipify.org?format=json
https://api.ipify.org?format=json

Python tools for research

❖ https://realpython.com/

❖ Python 3 cookbook: http://shop.oreilly.com/product/
0636920027072.do 
 
 
 
 
 
 
 

!79

more tips

https://realpython.com/
http://shop.oreilly.com/product/0636920027072.do
http://shop.oreilly.com/product/0636920027072.do

